
Total Annihilation and
Total Annihilation: Kingdoms

Reference Document

Technical Reference Document

By Arthur Keller
This version amended by Andrew L. Crystall

Portions Created by other individuals and used with permission

Version 2.5

Questions regarding this information can be directed to dawnfalcon@zoom.co.uk.

All work included herein is retained as the copyright of the original authors. Certain portions and technical data
are Copyright © Cavedog Entertainment, GT Interactive, Humongous Entertainment and Infogrames, Inc., all
rights reserved by copyright holders.

REVISION HISTORY .. 7

Project Status Report .. 8

Team Members .. 9

TOTAL ANNIHILATION .. 10

Directory Structure and File Formats ... 10
Directory Structure ... 10
Totala1.hpi Contents .. 11
Totala2.hpi Contents .. 39

HPI File Format Documentation .. 41

FBI Commands .. 51
Editable Categories .. 52
ARM Abbreviations ... 54
CORE Abbreviations ... 56

BOS Functions .. 57

BOS Script Tutorial – TA ... 59
static-var ... 60
#define .. 62
#include .. 63
Create() .. 63
StartMoving() ... 64
StopMoving() ... 65
AimPrimary(heading,pitch) ... 66
AimSecondary(heading,pitch) ... 66
AimTetriary(heading,pitch) ... 66
AimFromPrimary(piecenum) ... 68
AimFromSecondary(piecenum) ... 68
AimFromTetriary(piecenum) ... 68
QueryPrimary(piecenum) .. 68
QuerySecondary(piecenum) .. 68
QueryTetriary(piecenum) .. 68
FirePrimary(piecenum) .. 69
FireSecondary(piecenum) .. 69
FireTetriary(piecenum) .. 69
Activate() ... 70
Deactivate() ... 70
StartBuilding() ... 75
StopBuilding() .. 75
TargetHeading(heading) .. 76
QueryNanoPiece(piecenum) .. 76
QueryBuildInfo(piecenum) ... 77
QueryTransport(piecenum) .. 77
BeginTransport(height) .. 78
EndTransport() ... 78
SweetSpot(piecenum) .. 78
Demo() ... 79

Killed(severity, corpsetype) ... 79

GUI File Format ... 80
Generic Infos about gui files : ... 80
COMMON Tag descriptions : .. 83

id : ... 83
Name : .. 83
width/height ... 85
xpos/ypos : Read, not so obvious detail inside. ... 85
active : .. 85
fontnumber : ... 85
attribs : ... 85
assoc : ... 85
UNCOMMON Tag descriptions : .. 86
Headers (ID 0) : ... 86
Buttons (ID 1) : .. 88
Listbox (ID 2) : .. 89
Textbox (ID 3) : ... 90
Scrollbar (ID 4) : .. 91
Labels (ID 5) : .. 92
Blank Surfaces (ID 6) : .. 93
Fonts (ID 7) : .. 94
Picture Box (ID 12) : .. 94

GAF Format ... 95

SCT Format .. 101

OTA Format ... 102

BugFix Information ... 104
Unit ID Number Changes: ... 104
3rd party units don't work with Bugfix? .. 107
Speed Benifit: ... 107
AI fixes: ... 108
Ai profile changes: ... 110
Single-player Mission changes: ... 110
New control options! .. 111
Category changes in unit FBI files: ... 112
COB script file changes: .. 113
Core Necro changes: .. 115
Antinuke silo changes: ... 116
Arm Stunner EMP silo changes: .. 117
Krogoth changes: ... 117
Landmines Changes: .. 118
LRPC Changes: .. 119
Bugfix for the Arm Pelican: ... 119
Bugfix for ALL Hovercraft: ... 120
Bugfix for Naval Defensive Structures: ... 120
Bugfix for the Naval Dragons Teeth: ... 120
Bugfix for the Arm Penetrator: .. 121
EMG weapon changes: .. 121
Core Pyro changes: .. 121
Crawling Bomb changes: ... 122
Arm Fibber changes: .. 122

Core Leviathan Super-Sub changes: .. 122
Cruiser and Destroyer Changes: .. 122
Missile Frigate Changes: .. 123
Advanced bomber changes: ... 123
Anti-Aircraft missiles changed: ... 123
Flakker changes: .. 124
Zero-tolerance bug: .. 124
Weapons Changes: ... 124
Accumulating scars bug: .. 126
Corpse Changes: .. 126
Build Menu Changes: .. 127
Unit Name Changes: .. 127
Unit Changes: ... 128
Mobility changes on units: ... 129
GAMEDATA dir (in REV31.GP3) file changes: .. 129
Unfinished work: ... 130

Map Tutorials ... 132
Terragen Map Tutorial ... 132

WHAT YOU WILL NEED ... 132
PART ONE - SETTING UP TERRAGEN .. 132
PART TWO - DESIGNING YOUR MAP .. 133
PART THREE - MAKING IT A MAP ... 139

Creating Custom Tilesets ... 143
Create a concept ... 143
Design Your Texture and create a template. .. 144
Create the Terrain Features .. 144
Create A Pool of water ... 146
Create the acid ... 148
Create a River of Acid ... 149
Converting the sections to the TA color palette .. 151
Importing the bitmaps ... 151
Editing Height ... 153
Finishing Touches ... 155
Now its time to create a Terrain Archive and make your map! .. 156
Make your Map ... 157

AI TWEAKING GUIDE ... 160
What is the ai? .. 160
Cavedog's ai, and its problems: .. 160
General problems with all the ai's made by Cavedog: ... 161
But that can be changed! .. 163
What are ai's and Where do I put them? .. 163
How does the computer know which ai profile to use? ... 164
How do I change the ai? ... 164
Then what does make a good ai? ... 166
So, a good ai should build nothing but resources? ... 167
Obviously wasted resources are bad? .. 167
It's not supposed to do too much at one time, but is ALSO supposed to do everything? 167
So optimally, the ai should have 0 metal and 0 energy in storage? ... 167
How much resources should the ai be using to stay balanced? ... 168
It starts building lots of solars even though it has max energy! ... 169

Why is the ai slow building a fusion reactor? .. 169

How come the ai built 5 Advanced Aircraft Plants - I LIMITED it to just 3! ... 169

The difficult MATH side of ai profiles: ... 170

The ai's clockwork build patterns: ... 171
How come my ARM ai *SMOKES* my CORE ai? ... 172
Ok, I caught all of that. But my ai still seems slow to buildup! ... 172
testing, Testing, TESTING! ... 173
I'm doing a lot of testing, but what am I looking for to know what to change? .. 174
What kind of ai profile *DOES* a map need? .. 175
About MY ai... ... 177

TA Weapons Creation ... 178
Types of weapons .. 178
Important values and behaviour of the weapon. ... 178
Weapon Characteristics ... 179
Special weapon stuff ... 179
Looks of a weapon ... 180
The sounds it makes .. 180
Weapon Controls .. 180
Needed resources ... 180

TOTAL ANNIHILATION: KINGDOMS .. 181

Directory Structure and File Formats ... 181
Directory Structure ... 181
 .. 181
 ... 181
V2 Rocket.hpi Contents ... 186
V3Rocket.hpi Contents .. 187

FBI Functions ... 204
FBI TABLE ... 205

HPI Format Documentation– TA:K .. 214
CHECKSUM CALCULATION .. 217
DECOMPRESSION OF BLOCKS AND FILES .. 217

TNT Format and Conversion ... 219

 .. 219

 ... 219
Using the Exporter: .. 219
Heightmap: ... 220
The Minimap: ... 220
The Voidmap: .. 220
The Roadmap: .. 220
The Jpeg Key ... 221
The Auto Functions: .. 221
The Terrain Reader .. 221
Hex Keys and Hex Values ... 222
Package and Deployment! ... 222

Conversion Tutorial ... 223

Units Editor Tutorial – TDF Edit ... 223

INTRODUCTION ... 223
HOW TO USE THIS TUTORIAL ? ... 225
HOW TO USE TDF EDIT ... 226
ANIMS ... 227
CANBUILD .. 228
FEATURES .. 231

Info ... 232
GAMEDATA ... 234
OBJECTS3D .. 237
SCRIPT .. 250
SOUNDS ... 251
TRANSLATE .. 252
UNITS ... 255
MISC ... 264
COMPILATION OF THE UNIT ... 264
INSTALLATION AND CONFIGURATION OF THE PROGRAMS ... 265
3DO BUILDER + .. 272
SHORT NAME LIST .. 280

Creating Build Pictures ... 281

Customizing TA:K to Allow Third Party Races without Iron Plague .. 283

Revision History

Version Date Changes
2.2 9/10/01 Major Document revision, first public release
2.3 9/28/01 Added map tutorial sections, tileset creation tutorial,

corrected some FBI entries, added AI tweaking section,
corrected some formatting.

2.4 9/30/01 Added Weapons Creation, massive layout modifications,
fixed BOS tutorial, added TA:K third party race
installation instructions, reformatted TA FBI List and
deleted the weapons section (redundant with newer
weapons section),

Conversion Project Information

Project Status Report

Report Date: 10 Sep 2001

Task Description Date
Added

Start
Date

Estimated
Completion

Date

Percent
Complete

Recruitment of Staff 10/1/00 Ongoing
Research Activites
Investigation of 2nd Resource 12/1/00 5/15/01 100%
Compilation of TA FBI Commands 12/1/00 12/15/00 100%
Compilation of TA:K FBI Commands 12/1/00 60%
Compilation of TA BOS Commands 12/1/00 12/15/00 100%
Compilation of TA:K BOS Commands 12/1/00 35%
Decoding/Implementation of .gui files 3/1/01 55%
File/system layouts - TA 5/1/01 5/2/01 100%
File/system layouts - TA:K 5/1/01 5/2/01 100%
Compilation of Documents 1/1/01 Ongoing
Research of usability of demo 6/15/01 0%
Application Development
GUI converter 1/1/01 65%
TA - TA:K hpi converter 1/1/01 10%
Map converter 1/1/01 0%
Conversion
Tile Conversion 6/1/01 20%
Unit Conversion 9/15/01 0%
Map Conversion 7/15/01 0%
GUI conversion 6/15/01 40%
Creation
Create TA:K AI for TA Units 7/15/01 0%
Creation of other packages 8/1/01 0%
Create Install Package 8/7/01 0%
Testing
Alpha testing 9/30/01 0%
Beta Testing (closed) 11/1/01 0%
Beta Testing (open) 12/1/01 0%
Final Release 1/1/02 0%

Team Members

(This list is incomplete… If your name is missing, let me know)

Name Responsibilities Email
Arthur “Aslan” Keller Project Lead, Research aslan@tauniverse.com
Andrew “Dawn Falcon” Cyrstall Map Conversion Lead dawnfalcon@annihilated.com
Jerry20000 Map Conversion, Tilesets Jerry60000@hotmail.com
HANSOLO Unit Conversion Lead
GenghisKhanX Unit Conversion
Dark Rain GUI, Units, just about

everything else
rochdenis@hotmail.com

mailto:rochdenis@hotmail.com
mailto:Jerry60000@hotmail.com
mailto:aslan@tauniverse.com

Total Annihilation

Directory Structure and File Formats

Directory Structure

\CAVEDOG
TOTALA└───

 BACKUP├───
 CC└───
Directory PATH listing
Volume serial number is 0012FC94 00A3:DCB5
D:.

TOTALA└───
 ccdata.ccx│
 ccmaps.ccx│
 mptaext.dll│
 online.dll│
 readme.doc│
 setup.exe│
 setup.ini│
 smackw32.dll│
 Taccread.doc│
 Taccread.txt│
 tadwngox.dll│
 taheatx.dll│
 takalix.dll│
 tamplayx.dll│
 tatenx.dll│
 tawirepx.dll│
 TotalA.exe│
 totala1.hpi│
 totala2.hpi│
 │
 BACKUP├───
 online.dll│
 tadwngox.dll│
 taheatx.dll│
 takalix.dll│
 tamplayx.dll│
 tatenx.dll│
 tawirepx.dll│
 TotalA.exe│
 │
 CC└───
 Ccquery.exe
 INSTALL.LOG
 UNCC.EXE

Totala1.hpi Contents

TOTALA1.HPI
ai├───

 AirBattle.txt│
 DEFAULT.TXT│
 MISSIONS.TXT│
 SeaBattle.TXT│
 │

anims├───
 ALLIES.GAF│
 ANYMSN.GAF│
 Archibrief.GAF│
 ArchiFoli.GAF│
 ArchiFronds.GAF│
 ArchiMetal.GAF│
 ArchiPalms.GAF│
 Archipelago.GAF│
 ArchiTrees.GAF│
 Archivents.GAF│
 ARMAAC1.GAF│
 ARMAAC2.GAF│
 ARMAAP1.GAF│
 ARMAAP2.GAF│
 ARMACA1.GAF│
 ARMACA2.GAF│
 ARMACK1.GAF│
 ARMACK2.GAF│
 ARMACS1.GAF│
 ARMACS2.GAF│
 ARMACV1.GAF│
 ARMACV2.GAF│
 ARMALAB.GAF│
 ARMALAB1.GAF│
 ARMALAB2.GAF│
 ARMAMD1.GAF│
 ARMAP1.GAF│
 ARMASY1.GAF│
 ARMASY2.GAF│
 ARMAVP1.GAF│
 ARMAVP2.GAF│
 ARMAVP3.GAF│
 ARMBLDG.GAF│
 ARMCA1.GAF│
 ARMCA2.GAF│
 ARMCA3.GAF│
 ARMCAMO.GAF│
 ARMCK1.GAF│
 ARMCK2.GAF│
 ARMCK3.GAF│
 ARMCK4.GAF│
 ARMCOM1.GAF│
 ARMCOM2.GAF│
 ARMCS1.GAF│
 ARMCV1.GAF│
 ARMCV2.GAF│
 ARMCV3.GAF│
 ARMCV4.GAF│
 ARMINT.GAF│
 ARMLAB1.GAF│
 ARMOPT.GAF│
 ARMSHARE.GAF│
 ARMSHIPS.GAF│
 ARMSILO1.GAF│
 ARMSY1.GAF│
 ARMVEHIC.GAF│
 ARMVP1.GAF│
 BRIEF.GAF│
 COMMBOOM.GAF│
 commongui.GAF│
 commongui_french.GAF│

 commongui_german.GAF│
 CORAAC1.GAF│
 CORAAC2.GAF│
 CORAAP1.GAF│
 CORAAP2.GAF│
 CORACA1.GAF│
 CORACA2.GAF│
 CORACK1.GAF│
 CORACK2.GAF│
 CORACV1.GAF│
 CORACV2.GAF│
 CORALAB1.GAF│
 CORALAB2.GAF│
 CORAP1.GAF│
 CORASY1.GAF│
 CORASY2.GAF│
 CORAVP1.GAF│
 CORAVP2.GAF│
 CORAVP3.GAF│
 CORBLDG.GAF│
 CORCA1.GAF│
 CORCA2.GAF│
 CORCA3.GAF│
 CORCAMO.GAF│
 CORCK1.GAF│
 CORCK2.GAF│
 CORCK3.GAF│
 CORCK4.GAF│
 CORCOM1.GAF│
 CORCOM2.GAF│
 CORCS1.GAF│
 CORCV1.GAF│
 CORCV2.GAF│
 CORCV3.GAF│
 CORCV4.GAF│
 COREBLDG.GAF│
 CORFMD1.GAF│
 CORINT.GAF│
 CORLAB1.GAF│
 CORMAIN.GAF│
 CORSHIPS.GAF│
 CORSILO1.GAF│
 CORSY1.GAF│
 CORVEHIC.GAF│
 CORVP1.GAF│
 CURSORS.GAF│
 Desertbrief.GAF│
 DRYCRUSH.GAF│
 DRYMETAL.GAF│
 DRYROCKS.GAF│
 DRYSCARS.GAF│
 DRYVENTS.GAF│
 ENDMSN.GAF│
 FOG.GAF│
 FOGTILES.GAF│
 FRONTEND.GAF│
 FX.GAF│
 GEOTHERM.GAF│
 Greenbrief.GAF│
 greenvents.GAF│
 grnventest.GAF│
 hattfont11.GAF│
 hattfont12.GAF│
 HOLES.GAF│
 HUMANS.GAF│
 IceChunks.GAF│
 ICEMETAL.GAF│
 ICESCARS.GAF│
 ICEVENTS.GAF│
 IGTITLES.GAF│
 Lavabrief.GAF│
 LavaRockA.GAF│
 LavaRockB.GAF│

 LavaRockC.GAF│
 LavaScars.GAF│
 LavaSpires.GAF│
 LavaStuff.GAF│
 LavaStuff2.GAF│
 LOADGAME.GAF│
 LOGOS.GAF│
 LOUNGE.GAF│
 LOUNGE2.GAF│
 Lunar2Brief.GAF│
 Lunarbrief.GAF│
 MAINMENU.GAF│
 Marsbrief.GAF│
 MarsGlyphs.GAF│
 MarsPlants.GAF│
 MarsPlants2.GAF│
 MarsPlants3.GAF│
 MarsRockGone.GAF│
 MarsRockGoneShad.GAF│
 MarsRockHit.GAF│
 MarsRockHitShad.GAF│
 MarsRocks.GAF│
 MarsRocks2.GAF│
 MarsRocks3.GAF│
 MarsVents.GAF│
 Metalbrief.GAF│
 MISCART.GAF│
 mooncraters.GAF│
 mooncrush.GAF│
 moonmetal.GAF│
 moonrocks.GAF│
 moonscars.GAF│
 MUSIC.GAF│
 MUSICRT.GAF│
 NEWGAME.GAF│
 OLDMAIN.GAF│
 PIPES.GAF│
 PREFS.GAF│
 ROCKREC.GAF│
 rockrecscars.GAF│
 ROCKS.GAF│
 rocksdead.GAF│
 rockshurt.GAF│
 rockshurt2.GAF│
 RUINS1.GAF│
 SCARS.GAF│
 SELGAME.GAF│
 SELPROV.GAF│
 SELSIDE.GAF│
 SHARE.GAF│
 SINGLE.GAF│
 SKIRMISH.GAF│
 TALK.GAF│
 TALK2.GAF│
 TERRAIN.GAF│
 TITLES.GAF│
 TOWERS.GAF│
 towerscars.GAF│
 TREES.GAF│
 VENT.GAF│
 VENTS.GAF│
 VISMASK.GAF│
 VISMASKS.GAF│
 WDesertbrief.GAF│
 WETCRUSH.GAF│
 WETMETAL.GAF│
 WETROCKS.GAF│
 WETSCARS.GAF│
 WETVENTS.GAF│
 WRECKAGE.GAF│
 │

bitmaps├───
 ARMBKG.PCX│

 armguibottile.pcx│
 armguisidetile.pcx│
 armguitoptile.pcx│
 battleroom2.pcx│
 battlestart.pcx│
 BUTTONS2.PCX│
 CDLOG256.PCX│
 CONSOLE.PCX│
 COREBKG.PCX│
 corecamp0.PCX│
 corecamp1.pcx│
 corguibottile.pcx│
 corguisidetile.pcx│
 corguitoptile.pcx│
 createnew.pcx│
 DHELP.PCX│
 DLoadgame2.pcx│
 DLoadList.pcx│
 DRESTART.PCX│
 DSavegame2.pcx│
 DSaveList.pcx│
 DSelectmap2.pcx│
 DVIEWMAP.PCX│
 ENDCAMP.PCX│
 FAILURE.PCX│
 FRONTBG.PCX│
 Frontbgold.pcx│
 Frontend1F.PCX│
 FrontendX.pcx│
 GROMMETS.PCX│
 Hattfont10.PCX│
 Hattfont11.PCX│
 IGButtons.pcx│
 IGMBRIEF.PCX│
 IGOPT0X.PCX│
 IGOPT1X.PCX│
 Igoptintx.pcx│
 igoptionsTEMP.PCX│
 Igoptmusx.pcx│
 Igoptsoux.pcx│
 IgoptTEMP.pcx│
 Igoptvisx.pcx│
 IGPATCH.PCX│
 Installgame.pcx│
 InstallgameJ.pcx│
 Installglam.pcx│
 LOADBAR.PCX│
 Loadgame2bg.pcx│
 LOGOTEST.BMP│
 mbriefarm.pcx│
 mbriefcor.pcx│
 Mission02Win.PCX│
 Mission02Win2.PCX│
 Mission02WinBW.pcx│
 newcampaign4.pcx│
 newcampaign4x.pcx│
 newcamplogos.pcx│
 OptInterface4x.pcx│
 Options4x.pcx│
 Optmusic4x.pcx│
 OptSound4x.pcx│
 OptVisual4x.pcx│
 OUTCOME0.PCX│
 OUTCOME1.PCX│
 playanygame4.pcx│
 Playgame2.pcx│
 Playgame2J.pcx│
 pressedbone.PCX│
 PREVIEW.PIX│
 SAVEGAME.PCX│
 selconnect2.pcx│
 selectgame2x.pcx│
 SINGLEBG.PCX│

 Skirmsetup4x.pcx│
 SMALLDOG.BMP│
 small_cavedog_logo.pcx│
 stagebuttons.pcx│
 STAR.PCX│
 TEMP.PCX│
 temptrans.pcx│
 TITLSCRN.PCX│
 UnitRestrict.pcx│
 UnitRestrict4x.pcx│
 UnitRestrict5x.pcx│
 │

features├───
 all worlds│ ├───
 DragonsTeeth.tdf│ │
 scars.tdf│ │
 │ │
 archi│ ├───
 FOLIAGE.TDF│ │
 METAL.TDF│ │
 TREES.TDF│ │
 TREES2.TDF│ │
 VENTS.TDF│ │
 │ │
 corpses│ ├───
 arm_corpses.tdf│ │
 arm_heaps.tdf│ │
 core_corpses.tdf│ │
 core_heaps.tdf│ │
 │ │
 desert│ ├───
 METAL.TDF│ │
 ROCKS.TDF│ │
 RUIN.TDF│ │
 VENTS.TDF│ │
 │ │
 green│ ├───
 METAL.TDF│ │
 ROCKS.TDF│ │
 SHRUBS.TDF│ │
 SMUDGES.TDF│ │
 steamvents.tdf│ │
 TREES.TDF│ │
 │ │
 ice│ ├───
 CHUNKS.TDF│ │
 METAL.TDF│ │
 SCARS.TDF│ │
 VENTS.TDF│ │
 │ │
 lava│ ├───
 METAL.TDF│ │
 NODES.TDF│ │
 ROCKS.TDF│ │
 SPIRES.TDF│ │
 VENTS.TDF│ │
 │ │
 mars│ ├───
 GLYPHS.TDF│ │
 METAL.TDF│ │
 PLANTS.TDF│ │
 ROCKS.TDF│ │
 VENTS.TDF│ │
 │ │
 metal│ ├───
 buildings.tdf│ │
 PIPES.TDF│ │
 steamvents.tdf│ │
 │ │
 moon│ ├───
 CRATERS.TDF│ │
 METAL.TDF│ │
 ROCKS.TDF│ │

 │ │
 wetdesert│ └───
 metal.tdf│
 rocks.tdf│
 vents.tdf│
 │

fonts├───
 ARMBUTT.FNT│
 ARMCONTR.FNT│
 ARMFONT.FNT│
 armfont827.FNT│
 BUTTONS.FNT│
 COMIX.FNT│
 CONSOLE.FNT│
 CORBUTT.FNT│
 CORBUTTX.FNT│
 CORCONTR.FNT│
 COREFONT.FNT│
 Corefont827.FNT│
 COURIER.FNT│
 HATT12.FNT│
 HATT14.FNT│
 MSCRIPT.FNT│
 ROMAN10.FNT│
 ROMAN12.FNT│
 SMLFONT.FNT│
 │

gamedata├───
 ALLSOUND.TDF│
 BuildInfo.tdf│
 CATEGORY.TDF│
 HELP.TDF│
 LOS.TDF│
 METEOR.TDF│
 MOVEINFO.TDF│
 SIDEDATA.TDF│
 SOUND.TDF│
 Translate.tdf│
 UNITVIEW.TDF│
 │

guis├───
 ALLIES.GUI│
 ANYMSN.GUI│
 ARMAAP1.GUI│
 ARMACA1.GUI│
 ARMACA2.GUI│
 ARMACK1.GUI│
 ARMACK2.GUI│
 ARMACV1.GUI│
 ARMACV2.GUI│
 ARMALAB1.GUI│
 ARMAMD1.GUI│
 ARMAP1.GUI│
 ARMASY1.GUI│
 ARMAVP1.GUI│
 ARMAVP2.GUI│
 ARMBUILD.GUI│
 ARMBUTT.FNT│
 ARMCA1.GUI│
 ARMCA2.GUI│
 ARMCA3.GUI│
 ARMCK1.GUI│
 ARMCK2.GUI│
 ARMCK3.GUI│
 ARMCOM1.GUI│
 ARMCOM2.GUI│
 ARMCS1.GUI│
 ARMCV1.GUI│
 ARMCV2.GUI│
 ARMCV3.GUI│
 ARMGEN.GUI│
 ARMLAB1.GUI│
 ARMMAIN.GUI│

 ARMMAIN2.GUI│
 ARMOPT.GUI│
 ARMSILO1.GUI│
 ARMSY1.GUI│
 ARMVP1.GUI│
 BLANK.GUI│
 BRIEF.GUI│
 BRIEFING.GUI│
 BRIEFX.GUI│
 BUILDING.GUI│
 BUTTONS.FNT│
 CDCHECK.GUI│
 CHATSEL.GUI│
 CMENU.GUI│
 CONTROL.GUI│
 CORAAP1.GUI│
 CORACA1.GUI│
 CORACA2.GUI│
 CORACK1.GUI│
 CORACK2.GUI│
 CORACV1.GUI│
 CORACV2.GUI│
 CORALAB1.GUI│
 CORAP1.GUI│
 CORASY1.GUI│
 CORAVP1.GUI│
 CORAVP2.GUI│
 CORBUILD.GUI│
 CORBUTT.FNT│
 CORCA1.GUI│
 CORCA2.GUI│
 CORCA3.GUI│
 CORCK1.GUI│
 CORCK2.GUI│
 CORCK3.GUI│
 CORCOM1.GUI│
 CORCOM2.GUI│
 CORCS1.GUI│
 CORCV1.GUI│
 CORCV2.GUI│
 CORCV3.GUI│
 CORFMD1.GUI│
 CORGEN.GUI│
 CORLAB1.GUI│
 CORMAIN.GUI│
 CORMAIN2.GUI│
 CORSILO1.GUI│
 CORSY1.GUI│
 CORVP1.GUI│
 CREDITS.GUI│
 ENDGAME.GUI│
 ENDMSN.GUI│
 ENDMULTI.GUI│
 ENERGY.GUI│
 EXITMENU.GUI│
 GAMMA.GUI│
 HELP.GUI│
 LOADGAME.GUI│
 LOADLIST.GUI│
 LOGOSEL.GUI│
 LOUNGE.GUI│
 LOUNGE2.GUI│
 MAINMENU.GUI│
 METAL.GUI│
 MISSION.GUI│
 MISSIONX.GUI│
 MODEM.GUI│
 MOREINFO.GUI│
 MSGBOX.GUI│
 MSNBRIEF.GUI│
 MUSIC.GUI│
 MUSICRT.GUI│
 NEWCAMP.GUI│

 NEWGAME.GUI│
 NEWMULTI.GUI│
 OPTION.GUI│
 PREFS.GUI│
 RESTART.GUI│
 restrict2.GUI│
 ROMAN10.FNT│
 ROMAN12.FNT│
 SAVEGAME.GUI│
 SAVELIST.GUI│
 SCORE.GUI│
 SELCAMP.GUI│
 SELCAMPX.GUI│
 SELGAME.GUI│
 SELMAP.GUI│
 SELPROV.GUI│
 SELPROVX.GUI│
 SELSIDE.GUI│
 SELVMODE.GUI│
 SERIAL.GUI│
 SHARE.GUI│
 SIDESEL.GUI│
 SINGLE.GUI│
 SKIRMISH.GUI│
 SOUND.GUI│
 SOUNDS.GUI│
 SOUNDSRT.GUI│
 SPEEDS.GUI│
 SPEEDSRT.GUI│
 SSIDESEL.GUI│
 ssidesel1.gui│
 STARTOPT.GUI│
 TABMENU.GUI│
 TALK.GUI│
 TALK2.GUI│
 TCP.GUI│
 TIMEOUT.GUI│
 UNITINFO.GUI│
 Unitinfox.GUI│
 VIEWMAP.GUI│
 VISUALRT.GUI│
 VISUALS.GUI│
 WARP.GUI│
 YESORNO.GUI│
 │

objects3d├───
 1x1A.3do│
 1x1B.3do│
 1x1C.3do│
 1x1D.3do│
 1x1E.3do│
 1x1F.3do│
 2x2A.3do│
 2x2B.3do│
 2x2C.3do│
 2x2D.3do│
 2x2E.3do│
 2x2F.3do│
 3x3A.3do│
 3x3B.3do│
 3x3C.3do│
 3x3D.3do│
 3x3E.3do│
 3x3F.3do│
 4x4A.3do│
 4x4B.3do│
 4x4C.3do│
 4x4D.3do│
 4x4E.3do│
 4x4F.3do│
 5x5A.3do│
 5x5B.3do│
 5x5C.3do│

 5x5D.3do│
 6x6A.3do│
 6x6B.3do│
 6x6C.3do│
 6x6D.3do│
 7x7A.3do│
 7x7B.3do│
 7x7C.3do│
 7x7D.3do│
 amdrocket.3do│
 ARMaap.3do│
 armaap_dead.3do│
 ARMaca.3do│
 armaca_dead.3do│
 armack.3do│
 armack_dead.3do│
 armacv.3do│
 armacv_dead.3do│
 armalab.3do│
 armalab_dead.3do│
 ARMamd.3do│
 armamd_dead.3do│
 armanni.3do│
 armanni_dead.3do│
 armap.3do│
 armap_dead.3do│
 armarad.3do│
 armarad_dead.3do│
 armaser.3do│
 armaser_dead.3do│
 armasp.3do│
 armasp_dead.3do│
 armasy.3do│
 armasy_dead.3do│
 armatlas.3do│
 armatlas_dead.3do│
 armavp.3do│
 armavp_dead.3do│
 armbats.3do│
 armbats_dead.3do│
 armbrawl.3do│
 armbrawl_dead.3do│
 armbrtha.3do│
 armbrtha_dead.3do│
 armbull.3do│
 armbull_dead.3do│
 armca.3do│
 armcarry.3do│
 armcarry_dead.3do│
 armca_dead.3do│
 armck.3do│
 armck_dead.3do│
 armcom.3do│
 armcroc.3do│
 armcroc_dead.3do│
 armcrus.3do│
 armcrus_dead.3do│
 armcs.3do│
 armcs_dead.3do│
 armcv.3do│
 armcv_dead.3do│
 armdrag.3do│
 armestor.3do│
 armestor_dead.3do│
 armfast.3do│
 armfast_dead.3do│
 armfav.3do│
 armfav_dead.3do│
 armfido.3do│
 armfido_dead.3do│
 armfig.3do│
 armfig_dead.3do│
 armflash.3do│

 armflash_dead.3do│
 armfus.3do│
 armfus_dead.3do│
 armgate.3do│
 armgate_dead.3do│
 ARMgeo.3do│
 armgeo_dead.3do│
 armguard.3do│
 armguard_dead.3do│
 armham.3do│
 armham_dead.3do│
 armhawk.3do│
 armhawk_dead.3do│
 armhlt.3do│
 armhlt_dead.3do│
 armjam.3do│
 armjam_dead.3do│
 armjeth.3do│
 armjeth_dead.3do│
 armlab.3do│
 armlab_dead.3do│
 armlance.3do│
 armlance_dead.3do│
 armllt.3do│
 armllt_dead.3do│
 armmakr.3do│
 armmakr_dead.3do│
 armmart.3do│
 armmart_dead.3do│
 armmerl.3do│
 armmerl_dead.3do│
 armmex.3do│
 armmex_dead.3do│
 armmoho.3do│
 armmoho_dead.3do│
 ARMMship.3do│
 armmship_dead.3do│
 armmstor.3do│
 armmstor_dead.3do│
 armpeep.3do│
 armpeep_dead.3do│
 armpnix.3do│
 armpnix_dead.3do│
 armpt.3do│
 armpt_dead.3do│
 armpw.3do│
 armpw_dead.3do│
 armrad.3do│
 armrad_dead.3do│
 armrl.3do│
 armrl_dead.3do│
 armrock.3do│
 armrock_dead.3do│
 ARMroy.3do│
 armroy_dead.3do│
 armsam.3do│
 armsam_dead.3do│
 armseer.3do│
 armseer_dead.3do│
 armsilo.3do│
 armsilo_dead.3do│
 armsolar.3do│
 armsolar_dead.3do│
 armsonar.3do│
 armsonar_dead.3do│
 armspid.3do│
 armspid_dead.3do│
 armstump.3do│
 armstump_dead.3do│
 armsub.3do│
 armsubk.3do│
 armsubk_dead.3do│
 armsub_dead.3do│

 armsy.3do│
 armsy_dead.3do│
 armthund.3do│
 armthund_dead.3do│
 armtide.3do│
 armtide_dead.3do│
 armtl.3do│
 armtl_dead.3do│
 armtship.3do│
 armtship_dead.3do│
 armvader.3do│
 armvader_dead.3do│
 armvp.3do│
 armvp_dead.3do│
 armwin.3do│
 armwin_dead.3do│
 armzeus.3do│
 armzeus_dead.3do│
 Asteroid1.3do│
 Asteroid2.3do│
 Asteroid3.3do│
 Asteroid4.3do│
 Asteroid5.3do│
 Asteroid6.3do│
 ballmiss.3do│
 bomb.3do│
 bomb1.3do│
 bomb2.3do│
 bomb3.3do│
 coraap.3do│
 coraap_dead.3do│
 coraca.3do│
 coraca_dead.3do│
 corack.3do│
 corack_dead.3do│
 coracv.3do│
 coracv_dead.3do│
 corak.3do│
 corak_dead.3do│
 coralab.3do│
 coralab_dead.3do│
 corap.3do│
 corape.3do│
 corape_dead.3do│
 corap_dead.3do│
 corarad.3do│
 corarad_dead.3do│
 corasp.3do│
 corasp_dead.3do│
 corasy.3do│
 corasy_dead.3do│
 coravp.3do│
 coravp_dead.3do│
 corbats.3do│
 corbats_dead.3do│
 corbuild.3do│
 corbuild_dead.3do│
 corca.3do│
 corcan.3do│
 corcan_dead.3do│
 corcarry.3do│
 corcarry_dead.3do│
 corca_dead.3do│
 corck.3do│
 corck_dead.3do│
 corcom.3do│
 corcrash.3do│
 corcrash_dead.3do│
 corcrus.3do│
 corcrus_dead.3do│
 corcs.3do│
 corcs_dead.3do│
 corcv.3do│

 corcv_dead.3do│
 cordoom.3do│
 cordoom_dead.3do│
 cordrag.3do│
 cordrag_dead.3do│
 corestor.3do│
 corestor_dead.3do│
 coreter.3do│
 coreter_dead.3do│
 corfav.3do│
 corfav_dead.3do│
 corfink.3do│
 corfink_dead.3do│
 corfmd.3do│
 corfmd_dead.3do│
 corfus.3do│
 corfus_dead.3do│
 corgate.3do│
 corgate_dead.3do│
 corgator.3do│
 corgator_dead.3do│
 corgeo.3do│
 corgeo_dead.3do│
 corgol.3do│
 corgol_dead.3do│
 corhlt.3do│
 corhlt_dead.3do│
 corhurc.3do│
 corhurc_dead.3do│
 corint.3do│
 corint_dead.3do│
 corlab.3do│
 corlab_dead.3do│
 corllt.3do│
 corllt_dead.3do│
 cormakr.3do│
 cormakr_dead.3do│
 cormart.3do│
 cormart_dead.3do│
 cormex.3do│
 cormex_dead.3do│
 cormist.3do│
 cormist_dead.3do│
 cormoho.3do│
 cormoho_dead.3do│
 cormship.3do│
 cormship_dead.3do│
 cormstor.3do│
 cormstor_dead.3do│
 corpt.3do│
 corpt_dead.3do│
 corpun.3do│
 corpun_dead.3do│
 corpyro.3do│
 corpyro_dead.3do│
 corrad.3do│
 corrad_dead.3do│
 corraid.3do│
 corraid_dead.3do│
 correap.3do│
 correap_dead.3do│
 corrl.3do│
 corrl_dead.3do│
 corroach.3do│
 corroach_dead.3do│
 corroy.3do│
 corroy_dead.3do│
 corseal.3do│
 corseal_dead.3do│
 corshad.3do│
 corshad_dead.3do│
 corshark.3do│
 corshark_dead.3do│

 corshiprckt1.3do│
 corsilo.3do│
 corsilo_dead.3do│
 corsolar.3do│
 corsolar_dead.3do│
 corsonar.3do│
 corsonar_dead.3do│
 corspec.3do│
 corspec_dead.3do│
 corstorm.3do│
 corstorm_dead.3do│
 corsub.3do│
 corsub_dead.3do│
 corsy.3do│
 corsy_dead.3do│
 corthud.3do│
 corthud_dead.3do│
 cortide.3do│
 cortide_dead.3do│
 cortitan.3do│
 cortitan_dead.3do│
 cortl.3do│
 cortl_dead.3do│
 cortruck.3do│
 cortruck_dead.3do│
 cortship.3do│
 cortship_dead.3do│
 corvalk.3do│
 corvalk_dead.3do│
 corvamp.3do│
 corvamp_dead.3do│
 corveng.3do│
 corveng_dead.3do│
 corvp.3do│
 corvp_dead.3do│
 corvrad.3do│
 corvrad_dead.3do│
 corvroc.3do│
 corvrocket.3do│
 corvroc_dead.3do│
 corwin.3do│
 corwin_dead.3do│
 crblmssl.3do│
 deadtank.3do│
 DepthCharge.3do│
 dgun.3do│
 fmdmisl.3do│
 jefftest.3do│
 missile.3do│
 missle1.3do│
 missle2.3do│
 missle3.3do│
 nrgyshla.3do│
 nrgyshlb.3do│
 plasma.3do│
 rocket.3do│
 torpedo.3do│
 │

palettes├───
 GUIPAL.PAL│
 GUIPAL.PCX│
 PALETTE.ALP│
 PALETTE.LHT│
 PALETTE.PAL│
 PALETTE.SHD│
 │

scripts├───
 ARMAAP.BOS│
 ARMAAP.COB│
 ARMACA.BOS│
 ARMACA.COB│
 ARMACK.BOS│
 ARMACK.COB│

 ARMACV.BOS│
 ARMACV.COB│
 ARMALAB.BOS│
 ARMALAB.COB│
 ARMAMD.BOS│
 ARMAMD.COB│
 ARMANNI.BOS│
 ARMANNI.COB│
 ARMAP.BOS│
 ARMAP.COB│
 ARMARAD.BOS│
 ARMARAD.COB│
 ARMASER.BOS│
 ARMASER.COB│
 ARMASP.BOS│
 ARMASP.COB│
 ARMASY.BOS│
 ARMASY.COB│
 ARMATLAS.BOS│
 ARMATLAS.COB│
 ARMAVP.BOS│
 ARMAVP.COB│
 ARMBATS.BOS│
 ARMBATS.COB│
 ARMBRAWL.BOS│
 ARMBRAWL.COB│
 ARMBRTHA.BOS│
 ARMBRTHA.COB│
 ARMBULL.BOS│
 ARMBULL.COB│
 ARMCA.BOS│
 ARMCA.COB│
 ARMCARRY.BOS│
 ARMCARRY.COB│
 ARMCK.BOS│
 ARMCK.COB│
 ARMCOM.BOS│
 ARMCOM.COB│
 ARMCROC.BOS│
 ARMCROC.COB│
 ARMCRUS.BOS│
 ARMCRUS.COB│
 ARMCS.BOS│
 ARMCS.COB│
 ARMCV.BOS│
 ARMCV.COB│
 ARMDRAG.BOS│
 ARMDRAG.COB│
 ARMESTOR.BOS│
 ARMESTOR.COB│
 ARMFAST.BOS│
 ARMFAST.COB│
 ARMFAV.BOS│
 ARMFAV.COB│
 ARMFIDO.BOS│
 ARMFIDO.COB│
 ARMFIG.BOS│
 ARMFIG.COB│
 ARMFLASH.BOS│
 ARMFLASH.COB│
 ARMFUS.BOS│
 ARMFUS.COB│
 ARMGATE.BOS│
 ARMGATE.COB│
 ARMGEO.BOS│
 ARMGEO.COB│
 ARMGUARD.BOS│
 ARMGUARD.COB│
 ARMHAM.BOS│
 ARMHAM.COB│
 ARMHAWK.BOS│
 ARMHAWK.COB│
 ARMHLT.BOS│

 ARMHLT.COB│
 ARMJAM.BOS│
 ARMJAM.COB│
 ARMJETH.BOS│
 ARMJETH.COB│
 ARMLAB.BOS│
 ARMLAB.COB│
 ARMLANCE.BOS│
 ARMLANCE.COB│
 ARMLLT.BOS│
 ARMLLT.COB│
 ARMMAKR.BOS│
 ARMMAKR.COB│
 ARMMART.BOS│
 ARMMART.COB│
 ARMMERL.BOS│
 ARMMERL.COB│
 ARMMEX.BOS│
 ARMMEX.COB│
 ARMMOHO.BOS│
 ARMMOHO.COB│
 ARMMSHIP.BOS│
 ARMMSHIP.COB│
 ARMMSTOR.BOS│
 ARMMSTOR.COB│
 ARMPEEP.BOS│
 ARMPEEP.COB│
 ARMPNIX.BOS│
 ARMPNIX.COB│
 ARMPT.BOS│
 ARMPT.COB│
 ARMPW.BOS│
 ARMPW.COB│
 ARMRAD.BOS│
 ARMRAD.COB│
 ARMRL.BOS│
 ARMRL.COB│
 ARMROCK.BOS│
 ARMROCK.COB│
 ARMROY.BOS│
 ARMROY.COB│
 ARMSAM.BOS│
 ARMSAM.COB│
 ARMSEER.BOS│
 ARMSEER.COB│
 ARMSILO.BOS│
 ARMSILO.COB│
 ARMSOLAR.BOS│
 ARMSOLAR.COB│
 ARMSONAR.BOS│
 ARMSONAR.COB│
 ARMSPID.BOS│
 ARMSPID.COB│
 ARMSTUMP.BOS│
 ARMSTUMP.COB│
 ARMSUB.BOS│
 ARMSUB.COB│
 ARMSUBK.BOS│
 ARMSUBK.COB│
 ARMSY.BOS│
 ARMSY.COB│
 ARMTHUND.BOS│
 ARMTHUND.COB│
 ARMTIDE.BOS│
 ARMTIDE.COB│
 ARMTL.BOS│
 ARMTL.COB│
 ARMTSHIP.BOS│
 ARMTSHIP.COB│
 ARMVADER.BOS│
 ARMVADER.COB│
 ARMVP.BOS│
 ARMVP.COB│

 ARMWIN.BOS│
 ARMWIN.COB│
 ARMZEUS.BOS│
 ARMZEUS.COB│
 COMPILE.BAT│
 CORAAP.BOS│
 CORAAP.COB│
 CORACA.BOS│
 CORACA.COB│
 CORACK.BOS│
 CORACK.COB│
 CORACV.BOS│
 CORACV.COB│
 CORAK.BOS│
 CORAK.COB│
 CORALAB.BOS│
 CORALAB.COB│
 CORAP.BOS│
 CORAP.COB│
 CORAPE.BOS│
 CORAPE.COB│
 CORARAD.BOS│
 CORARAD.COB│
 CORASP.BOS│
 CORASP.COB│
 CORASY.BOS│
 CORASY.COB│
 CORAVP.BOS│
 CORAVP.COB│
 CORBATS.BOS│
 CORBATS.COB│
 CORBUILD.BOS│
 CORBUILD.COB│
 CORCA.BOS│
 CORCA.COB│
 CORCAN.BOS│
 CORCAN.COB│
 CORCARRY.BOS│
 CORCARRY.COB│
 CORCK.BOS│
 CORCK.COB│
 CORCOM.BOS│
 CORCOM.COB│
 CORCRASH.BOS│
 CORCRASH.COB│
 CORCRUS.BOS│
 CORCRUS.COB│
 CORCS.BOS│
 CORCS.COB│
 CORCV.BOS│
 CORCV.COB│
 CORDOOM.BOS│
 CORDOOM.COB│
 CORDRAG.BOS│
 CORDRAG.COB│
 CORESTOR.BOS│
 CORESTOR.COB│
 CORETER.BOS│
 CORETER.COB│
 CORFAV.BOS│
 CORFAV.COB│
 CORFINK.BOS│
 CORFINK.COB│
 CORFMD.BOS│
 CORFMD.COB│
 CORFUS.BOS│
 CORFUS.COB│
 CORGATE.BOS│
 CORGATE.COB│
 CORGATOR.BOS│
 CORGATOR.COB│
 CORGEO.BOS│
 CORGEO.COB│

 CORGOL.BOS│
 CORGOL.COB│
 CORHLT.BOS│
 CORHLT.COB│
 CORHURC.BOS│
 CORHURC.COB│
 CORINT.BOS│
 CORINT.COB│
 CORLAB.BOS│
 CORLAB.COB│
 CORLLT.BOS│
 CORLLT.COB│
 CORMAKR.BOS│
 CORMAKR.COB│
 CORMART.BOS│
 CORMART.COB│
 CORMEX.BOS│
 CORMEX.COB│
 CORMIST.BOS│
 CORMIST.COB│
 CORMOHO.BOS│
 CORMOHO.COB│
 CORMSHIP.BOS│
 CORMSHIP.COB│
 CORMSTOR.BOS│
 CORMSTOR.COB│
 CORPT.BOS│
 CORPT.COB│
 CORPUN.BOS│
 CORPUN.COB│
 CORPYRO.BOS│
 CORPYRO.COB│
 CORRAD.BOS│
 CORRAD.COB│
 CORRAID.BOS│
 CORRAID.COB│
 CORREAP.BOS│
 CORREAP.COB│
 CORRL.BOS│
 CORRL.COB│
 CORROACH.BOS│
 CORROACH.COB│
 CORROY.BOS│
 CORROY.COB│
 CORSEAL.BOS│
 CORSEAL.COB│
 CORSHAD.BOS│
 CORSHAD.COB│
 CORSHARK.BOS│
 CORSHARK.COB│
 CORSILO.BOS│
 CORSILO.COB│
 CORSOLAR.BOS│
 CORSOLAR.COB│
 CORSONAR.BOS│
 CORSONAR.COB│
 CORSPEC.BOS│
 CORSPEC.COB│
 CORSTORM.BOS│
 CORSTORM.COB│
 CORSUB.BOS│
 CORSUB.COB│
 CORSY.BOS│
 CORSY.COB│
 CORTHUD.BOS│
 CORTHUD.COB│
 CORTIDE.BOS│
 CORTIDE.COB│
 CORTITAN.BOS│
 CORTITAN.COB│
 CORTL.BOS│
 CORTL.COB│
 CORTRUCK.BOS│

 CORTRUCK.COB│
 CORTSHIP.BOS│
 CORTSHIP.COB│
 CORVALK.BOS│
 CORVALK.COB│
 CORVAMP.BOS│
 CORVAMP.COB│
 CORVENG.BOS│
 CORVENG.COB│
 CORVP.BOS│
 CORVP.COB│
 CORVRAD.BOS│
 CORVRAD.COB│
 CORVROC.BOS│
 CORVROC.COB│
 CORWIN.BOS│
 CORWIN.COB│
 EXPTYPE.H│
 HELP.H│
 HITWEAP.H│
 ROCKUNIT.H│
 SFXTYPE.H│
 SMOKEUNIT.H│
 STATECHG.H│
 STDSCRPT.H│
 STDTANK.H│
 YARD.H│
 │

sounds├───
 ANNI.WAV│
 ANNIGUN1.WAV│
 ARMSML1.WAV│
 ARMSML2.WAV│
 ARMSML3.WAV│
 ARMSML4.WAV│
 BEEP1.WAV│
 BEEP2.WAV│
 BEEP3.WAV│
 BEEP4.WAV│
 BEEP5.WAV│
 BEEP6.WAV│
 BERTHA1.WAV│
 BERTHA2.WAV│
 BERTHA3.WAV│
 BERTHA4.WAV│
 BERTHA5.WAV│
 BERTHA6.WAV│
 BOMBREL.WAV│
 BUILD1.WAV│
 BUILD2.WAV│
 BURN01.WAV│
 BURN02.WAV│
 BURN03.WAV│
 BURN1.WAV│
 BURNLRG.WAV│
 BURNMED.WAV│
 BURNSML.WAV│
 BUTMAIN.WAV│
 BUTMAIN1.WAV│
 BUTMAIN2.WAV│
 BUTMAIN3.WAV│
 BUTMAIN4.WAV│
 BUTNAGR1.WAV│
 BUTNAGR2.WAV│
 BUTNMBL1.WAV│
 BUTNMBL2.WAV│
 BUTNOPTN.WAV│
 BUTNSID1.WAV│
 BUTNSID2.WAV│
 BUTNSID3.WAV│
 BUTNSKIR.WAV│
 BUTOPTN.WAV│
 BUTSCRO1.WAV│

 BUTSCRO2.WAV│
 BUTTN01.WAV│
 BUTTN02.WAV│
 BUTTN06.WAV│
 BUTTON1.WAV│
 BUTTON10.WAV│
 BUTTON11.WAV│
 BUTTON12.WAV│
 BUTTON13.WAV│
 BUTTON2.WAV│
 BUTTON3.WAV│
 BUTTON4.WAV│
 BUTTON5.WAV│
 BUTTON6.WAV│
 BUTTON7.WAV│
 BUTTON8.WAV│
 BUTTON9.WAV│
 CANCEL1.WAV│
 CANCEL2.WAV│
 CANLITE1.WAV│
 CANLITE2.WAV│
 CANLITE3.WAV│
 CANNHVY1.WAV│
 CANNHVY2.WAV│
 CANNHVY3.WAV│
 CANNHVY4.WAV│
 CANNHVY5.WAV│
 CANNON1.WAV│
 CANNON2.WAV│
 CANNON3.WAV│
 CANTDO.WAV│
 CANTDO1.WAV│
 CANTDO2.WAV│
 CANTDO3.WAV│
 CANTDO4.WAV│
 CANZIP1.WAV│
 CANZIP2.WAV│
 CAPTURE1.WAV│
 CAPTURE2.WAV│
 CDOGGY.WAV│
 COMFIRE1.WAV│
 COMFIRE2.WAV│
 COUNT1.WAV│
 COUNT2.WAV│
 COUNT3.WAV│
 COUNT4.WAV│
 COUNT5.WAV│
 COUNT6.WAV│
 DEBRIS1.WAV│
 DEBRIS2.WAV│
 DEBRIS3.WAV│
 DEBRIS4.WAV│
 DEBRIS5.WAV│
 DEBRIS6.WAV│
 DEPTH1.WAV│
 DEPTH2.WAV│
 DEPTH3.WAV│
 DISIGUN1.WAV│
 DOOM.WAV│
 DRONE1.WAV│
 DRONE2.WAV│
 DRONE3.WAV│
 EMGPULS1.WAV│
 EMGPULSE.WAV│
 ENERGYN1.WAV│
 ENERGYN2.WAV│
 EXPLODE.WAV│
 EXPLODE2.WAV│
 FLAMHVY1.WAV│
 FLAMHVY2.WAV│
 FLAMHVY3.WAV│
 FLAMLIT1.WAV│
 FLAMLIT2.WAV│

 FLAMLIT3.WAV│
 FUSION1.WAV│
 FUSION2.WAV│
 GEOTHRM1.WAV│
 GEOTHRM2.WAV│
 GUN110.WAV│
 GUNHUGE.WAV│
 GUNRAPID.WAV│
 HONK.WAV│
 KBARMMOV.WAV│
 KBARMSE1.WAV│
 KBARMSEL.WAV│
 KBARMSTP.WAV│
 KBCORMOV.WAV│
 KBCORSEL.WAV│
 KBCORSTP.WAV│
 KCARMACT.WAV│
 KCARMMOV.WAV│
 KCARMSEL.WAV│
 KCARMSTP.WAV│
 KCCORSEL.WAV│
 KCCORSTP.WAV│
 KCORMOV.WAV│
 KLOAK1.WAV│
 KLOAK1UN.WAV│
 KLOAK2.WAV│
 KLOAK2UN.WAV│
 LAMEBURN.WAV│
 LARGEGUN.WAV│
 LASER.WAV│
 LASHIT.WAV│
 LASRCAN1.WAV│
 LASRCAN2.WAV│
 LASRFAST.WAV│
 LASRFIR1.WAV│
 LASRFIR2.WAV│
 LASRFIR3.WAV│
 LASRHIT1.WAV│
 LASRHIT2.WAV│
 LASRHIT3.WAV│
 LASRHVY1.WAV│
 LASRHVY2.WAV│
 LASRHVY3.WAV│
 LASRLIT1.WAV│
 LASRLIT2.WAV│
 LASRLIT3.WAV│
 LASRMAS1.WAV│
 LASRMAS2.WAV│
 LASRMAS3.WAV│
 LASRSLOW.WAV│
 LGHTHVY1.WAV│
 LOADAIR.WAV│
 LOADWTR1.WAV│
 LOADWTR2.WAV│
 MECHANI.WAV│
 METALNO1.WAV│
 METALNO2.WAV│
 METLOFF1.WAV│
 METLOFF2.WAV│
 METLON1.WAV│
 METLON2.WAV│
 METLRUN1.WAV│
 METLRUN2.WAV│
 MEXOFF1.WAV│
 MEXOFF2.WAV│
 MEXON1.WAV│
 MEXON2.WAV│
 MEXRUN1.WAV│
 MEXRUN2.WAV│
 MISICBM1.WAV│
 MISICBM2.WAV│
 MISICBM3.WAV│
 MISLHVY1.WAV│

 MISLHVY2.WAV│
 MISLHVY3.WAV│
 MISLITE1.WAV│
 MISLITE2.WAV│
 MISLITE3.WAV│
 MISSTAR1.WAV│
 MISSTAR2.WAV│
 MOHOOFF1.WAV│
 MOHOOFF2.WAV│
 MOHOON1.WAV│
 MOHOON2.WAV│
 MOHORUN1.WAV│
 MOHORUN2.WAV│
 NANLATH1.WAV│
 NANLATH2.WAV│
 PAIRACTV.WAV│
 PAIRWORK.WAV│
 PHASER.WAV│
 PLABACTV.WAV│
 PLABWORK.WAV│
 PLASHVY1.WAV│
 PLASMED1.WAV│
 PLASSML1.WAV│
 PSHPACTV.WAV│
 PSHPWORK.WAV│
 PVEHACTV.WAV│
 PVEHWORK.WAV│
 RADADDE1.WAV│
 RADADDE2.WAV│
 RADADVN1.WAV│
 RADADVN2.WAV│
 RADAR1.WAV│
 RADAR2.WAV│
 RADARDE1.WAV│
 RADARDE2.WAV│
 RADJAM1.WAV│
 RADJAM2.WAV│
 RANGE1.WAV│
 RANGE2.WAV│
 RECLAIM1.WAV│
 RECLAIM2.WAV│
 REPAIR1.WAV│
 REPAIR2.WAV│
 ROCKET.WAV│
 ROCKHVY1.WAV│
 ROCKHVY2.WAV│
 ROCKHVY3.WAV│
 ROCKLIT1.WAV│
 ROCKLIT2.WAV│
 ROCKLIT3.WAV│
 ROCKXPL1.WAV│
 ROCKXPL2.WAV│
 ROCKXPL3.WAV│
 SERVLARG.WAV│
 SERVLRG1.WAV│
 SERVLRG2.WAV│
 SERVLRG3.WAV│
 SERVLRG4.WAV│
 SERVMD01.WAV│
 SERVMD02.WAV│
 SERVMD03.WAV│
 SERVMED1.WAV│
 SERVMED2.WAV│
 SERVMED3.WAV│
 SERVMED4.WAV│
 SERVROC1.WAV│
 SERVSML1.WAV│
 SERVSML2.WAV│
 SERVSML3.WAV│
 SERVSML4.WAV│
 SERVSML5.WAV│
 SERVSML6.WAV│
 SERVTNY1.WAV│

 SERVTNY2.WAV│
 SHARMMOV.WAV│
 SHARMSEL.WAV│
 SHARMSTP.WAV│
 SHCORMOV.WAV│
 SHCORSEL.WAV│
 SHCORSTP.WAV│
 SING.WAV│
 SOLAR1.WAV│
 SOLAR2.WAV│
 SONAR1.WAV│
 SONAR2.WAV│
 SONARDE1.WAV│
 SONARDE2.WAV│
 SONARJAM.WAV│
 SPIDER.WAV│
 SPLSLRG.WAV│
 SPLSMED.WAV│
 SPLSSML.WAV│
 STORMTL1.WAV│
 STORMTL2.WAV│
 STORNGY1.WAV│
 STORNGY2.WAV│
 SUARMMOV.WAV│
 SUARMSEL.WAV│
 SUARMSTP.WAV│
 SUCORMOV.WAV│
 SUCORSEL.WAV│
 SUCORSTP.WAV│
 TARMMOVE.WAV│
 TARMSEL.WAV│
 TARMST0P.WAV│
 TCORMOVE.WAV│
 TCORSEL.WAV│
 TCORST0P.WAV│
 TIDEGEN1.WAV│
 TIDEGEN2.WAV│
 TORPEDO1.WAV│
 TORPEDO2.WAV│
 TREEMED.WAV│
 TURLGSO1.WAV│
 TURLGSO2.WAV│
 TURLONG1.WAV│
 TURMED1.WAV│
 TURMED2.WAV│
 TURMED3.WAV│
 TWRACTV1.WAV│
 TWRACTV2.WAV│
 TWRACTV3.WAV│
 TWRACTV4.WAV│
 TWRTUR63.WAV│
 TWRTURN1.WAV│
 TWRTURN2.WAV│
 TWRTURN3.WAV│
 TWRTURN4.WAV│
 UNITDONE.WAV│
 VARMMOVE.WAV│
 VARMSEL.WAV│
 VARMSTOP.WAV│
 VCORMOVE.WAV│
 VCORSEL.WAV│
 VCORSTOP.WAV│
 VICTORY2.WAV│
 VICTORY4.WAV│
 VTOLARAC.WAV│
 VTOLARLD.WAV│
 VTOLARMV.WAV│
 VTOLCRAC.WAV│
 VTOLCRLD.WAV│
 VTOLCRMV.WAV│
 WARNING1.WAV│
 WARNING2.WAV│
 WINDGEN1.WAV│

 WINDGEN2.WAV│
 XPLOBLD1.WAV│
 XPLOBLD2.WAV│
 XPLOBLD3.WAV│
 XPLOCOM1.WAV│
 XPLODEP1.WAV│
 XPLODEP2.WAV│
 XPLODEP3.WAV│
 XPLOLRG1.WAV│
 XPLOLRG2.WAV│
 XPLOLRG3.WAV│
 XPLOLRG4.WAV│
 XPLOMAS1.WAV│
 XPLOMAS2.WAV│
 XPLOMAS3.WAV│
 XPLOMAS4.WAV│
 XPLOMED1.WAV│
 XPLOMED2.WAV│
 XPLOMED3.WAV│
 XPLOMED4.WAV│
 XPLONUK1.WAV│
 XPLONUK2.WAV│
 XPLONUK3.WAV│
 XPLONUK4.WAV│
 XPLOSML1.WAV│
 XPLOSML2.WAV│
 XPLOSML3.WAV│
 XPLOSML4.WAV│
 │

textures├───
 ARMBLDG.GAF│
 ARMCAMO.GAF│
 ARMSHIPS.GAF│

 ARMVEHIC.GAF│
 CORBLDG.GAF│
 CORCAMO.GAF│
 CORSHIPS.GAF│
 CORVEHIC.GAF│
 LOGOS.GAF│
 WRECKAGE.GAF│
 │

unitpics├───
 ARMAAP.PCX│
 ARMAC.PCX│
 ARMACA.PCX│
 ARMACK.PCX│
 ARMACV.PCX│
 ARMALAB.PCX│
 ARMAMD.PCX│
 ARMANNI.PCX│
 ARMAP.PCX│
 ARMARAD.PCX│
 ARMASER.PCX│
 ARMASP.PCX│
 ARMASY.PCX│
 ARMATLAS.PCX│
 ARMAVP.PCX│
 ARMBATS.PCX│
 ARMBRAWL.PCX│
 ARMBRTHA.PCX│
 ARMBULL.PCX│
 ARMCA.PCX│
 ARMCARRY.PCX│
 ARMCK.PCX│
 ARMCOM.PCX│
 ARMCROC.PCX│
 ARMCRUS.PCX│
 ARMCS.PCX│
 ARMCV.PCX│
 ARMDRAG.PCX│
 ARMESTOR.PCX│

 ARMFAST.PCX│
 ARMFAV.PCX│
 ARMFIDO.PCX│
 ARMFIG.PCX│
 ARMFLASH.PCX│
 ARMFUS.PCX│
 ARMGATE.PCX│
 ARMGEO.PCX│
 ARMGUARD.PCX│
 ARMHAM.PCX│
 ARMHAWK.PCX│
 ARMHLT.PCX│
 ARMJAM.PCX│
 ARMJETH.PCX│
 ARMLAB.PCX│
 ARMLANCE.PCX│
 ARMLLT.PCX│
 ARMMAKR.PCX│
 ARMMART.PCX│
 ARMMERL.PCX│
 ARMMEX.PCX│
 ARMMOHO.PCX│
 ARMMSHIP.PCX│
 ARMMSTOR.PCX│
 ARMNIX.PCX│
 ARMPEEP.PCX│
 ARMPNIX.PCX│
 ARMPT.PCX│
 ArmPW.PCX│
 ARMRAD.PCX│
 ARMRL.PCX│
 ARMROCK.PCX│
 ARMROY.PCX│
 ARMSAM.PCX│
 ARMSEER.PCX│
 ARMSILO.PCX│
 ARMSOLAR.PCX│
 ARMSONAR.PCX│
 ARMSPID.PCX│
 ARMSTUMP.PCX│
 ARMSUB.PCX│
 ARMSUBK.PCX│
 ARMSY.PCX│
 ARMTHUND.PCX│
 ARMTID.PCX│
 ARMTIDE.PCX│
 ARMTL.PCX│
 ARMTSHIP.PCX│
 ARMVADER.PCX│
 ARMVP.PCX│
 ARMVRAD.PCX│
 ARMWIN.PCX│
 ARMZEUS.PCX│
 CORAAP.PCX│
 CORAC.PCX│
 CORACA.PCX│
 CORACK.PCX│
 CORACV.PCX│
 CORAK.PCX│
 CORALAB.PCX│
 CORAP.PCX│
 CORAPE.PCX│
 CORARAD.PCX│
 CORASP.PCX│
 CORASY.PCX│
 CORAVP.PCX│
 CORBATS.PCX│
 CORCA.PCX│
 CORCAN.PCX│
 CORCARRY.PCX│
 CORCK.PCX│
 CORCOM.PCX│
 CORCRASH.PCX│

 CORCRUS.PCX│
 CORCS.PCX│
 CORCV.PCX│
 CORDOOM.PCX│
 CORDRAG.PCX│
 CORESTOR.PCX│
 CORETER.PCX│
 CORFAV.PCX│
 CORFING.PCX│
 CORFINK.PCX│
 CORFMD.PCX│
 CORFUS.PCX│
 CORGATE.PCX│
 CORGATOR.PCX│
 CORGEO.PCX│
 CORGOL.PCX│
 CORHLT.PCX│
 CORHURC.PCX│
 CORINT.PCX│
 CORLAB.PCX│
 CORLLT.PCX│
 CORMAKR.PCX│
 CORMART.PCX│
 CORMEX.PCX│
 CORMIST.PCX│
 CORMOHO.PCX│
 CORMSHIP.PCX│
 CORMSTOR.PCX│
 CORPT.PCX│
 CORPUN.PCX│
 CORPYRO.PCX│
 CORRAD.PCX│
 CORRAID.PCX│
 CORREAP.PCX│
 CORRL.PCX│
 CORROACH.PCX│
 CORROY.PCX│
 CORSEAL.PCX│
 CORSHAD.PCX│
 CORSHARK.PCX│
 CORSILO.PCX│
 CORSOLAR.PCX│
 CORSONAR.PCX│
 CORSPEC.PCX│
 CORSTORM.PCX│
 CORSUB.PCX│
 CORSY.PCX│
 CORTHUD.PCX│
 CORTIDE.PCX│
 CORTITAN.PCX│
 CORTL.PCX│
 CORTSHIP.PCX│
 CORVALK.PCX│
 CORVAMP.PCX│
 CORVENG.PCX│
 CORVP.PCX│
 CORVRAD.PCX│
 CORVROC.PCX│
 CORWIN.PCX│
 │

units├───
 ALLUNITS.XLS│
 ARMAAP.FBI│
 ARMACA.FBI│
 ARMACK.FBI│
 ARMACV.FBI│
 ARMALAB.FBI│
 ARMAMD.FBI│
 ARMANNI.FBI│
 ARMAP.FBI│
 ARMARAD.FBI│
 ARMASER.FBI│
 ARMASP.FBI│

 ARMASY.FBI│
 ARMATLAS.FBI│
 ARMAVP.FBI│
 ARMBATS.FBI│
 ARMBRAWL.FBI│
 ARMBRTHA.FBI│
 ARMBULL.FBI│
 ARMCA.FBI│
 ARMCARRY.FBI│
 ARMCK.FBI│
 ARMCOM.FBI│
 ARMCROC.FBI│
 ARMCRUS.FBI│
 ARMCS.FBI│
 ARMCV.FBI│
 ARMDRAG.FBI│
 ARMESTOR.FBI│
 ARMFAST.FBI│
 ARMFAV.FBI│
 ARMFIDO.FBI│
 ARMFIG.FBI│
 ARMFLASH.FBI│
 ARMFUS.FBI│
 ARMGATE.FBI│
 ARMGEO.FBI│
 ARMGUARD.FBI│
 ARMHAM.FBI│
 ARMHAWK.FBI│
 ARMHLT.FBI│
 ARMJAM.FBI│
 ARMJETH.FBI│
 ARMLAB.FBI│
 ARMLANCE.FBI│
 ARMLLT.FBI│
 ARMMAKR.FBI│
 ARMMART.FBI│
 ARMMERL.FBI│
 ARMMEX.FBI│
 ARMMOHO.FBI│
 ARMMSHIP.FBI│
 ARMMSTOR.FBI│
 ARMPEEP.FBI│
 ARMPNIX.FBI│
 ARMPT.FBI│
 ARMPW.FBI│
 ARMRAD.FBI│
 ARMRL.FBI│
 ARMROCK.FBI│
 ARMROY.FBI│
 ARMSAM.FBI│
 ARMSEER.FBI│
 ARMSILO.FBI│
 ARMSOLAR.FBI│
 ARMSONAR.FBI│
 ARMSPID.FBI│
 ARMSTUMP.FBI│
 ARMSUB.FBI│
 ARMSUBK.FBI│
 ARMSY.FBI│
 ARMTHUND.FBI│
 ARMTIDE.FBI│
 ARMTL.FBI│
 ARMTSHIP.FBI│
 ARMVADER.FBI│
 ARMVP.FBI│
 ARMWIN.FBI│
 ARMZEUS.FBI│
 BUILDALL.BAT│
 CORAAP.FBI│
 CORACA.FBI│
 CORACK.FBI│
 CORACV.FBI│
 CORAK.FBI│

 CORALAB.FBI│
 CORAP.FBI│
 CORAPE.FBI│
 CORARAD.FBI│
 CORASP.FBI│
 CORASY.FBI│
 CORAVP.FBI│
 CORBATS.FBI│
 CORBUILD.FBI│
 CORCA.FBI│
 CORCAN.FBI│
 CORCARRY.FBI│
 CORCK.FBI│
 CORCOM.FBI│
 CORCRASH.FBI│
 CORCRUS.FBI│
 CORCS.FBI│
 CORCV.FBI│
 CORDOOM.FBI│
 CORDRAG.FBI│
 CORESTOR.FBI│
 CORETER.FBI│
 CORFAV.FBI│
 CORFINK.FBI│
 CORFMD.FBI│
 CORFUS.FBI│
 CORGATE.FBI│
 CORGATOR.FBI│
 CORGEO.FBI│
 CORGOL.FBI│
 CORHLT.FBI│
 CORHURC.FBI│
 CORINT.FBI│
 CORLAB.FBI│
 CORLLT.FBI│
 CORMAKR.FBI│
 CORMART.FBI│
 CORMEX.FBI│
 CORMIST.FBI│
 CORMOHO.FBI│
 CORMSHIP.FBI│
 CORMSTOR.FBI│
 CORPT.FBI│
 CORPUN.FBI│
 CORPYRO.FBI│
 CORRAD.FBI│
 CORRAID.FBI│
 CORREAP.FBI│
 CORRL.FBI│
 CORROACH.FBI│
 CORROY.FBI│
 CORSEAL.FBI│
 CORSHAD.FBI│
 CORSHARK.FBI│
 CORSILO.FBI│
 CORSOLAR.FBI│
 CORSONAR.FBI│
 CORSPEC.FBI│
 CORSTORM.FBI│
 CORSUB.FBI│
 CORSY.FBI│
 CORTHUD.FBI│
 CORTIDE.FBI│
 CORTITAN.FBI│
 CORTL.FBI│
 CORTRUCK.FBI│
 CORTSHIP.FBI│
 CORVALK.FBI│
 CORVAMP.FBI│
 CORVENG.FBI│
 CORVP.FBI│
 CORVRAD.FBI│
 CORVROC.FBI│

 CORWIN.FBI│
 FBI2XLS.PL│
 MAKEXLS.BAT│
 More.txt│
 XLS2FBI.PL│
 │

weapons└───
 CANNONS.TDF
 FIRES.TDF
 LASERS.TDF
 METEORS.TDF
 MISSILES.TDF
 ROCKETS.TDF
 UNITS.TDF
 WEAPONS.TDF

Totala2.hpi Contents

TOTALA2.HPI
bitmaps├───

 ARMBKG.PCX│
 armguibottile.pcx│
 armguisidetile.pcx│
 armguitoptile.pcx│
 battleroom2.pcx│
 battlestart.pcx│
 BUTTONS2.PCX│
 CDLOG256.PCX│
 CONSOLE.PCX│
 COREBKG.PCX│
 corecamp0.PCX│
 corecamp1.pcx│
 corguibottile.pcx│
 corguisidetile.pcx│
 corguitoptile.pcx│
 createnew.pcx│
 DHELP.PCX│
 DLoadgame2.pcx│
 DLoadList.pcx│
 DRESTART.PCX│
 DSavegame2.pcx│
 DSaveList.pcx│
 DSelectmap2.pcx│
 DVIEWMAP.PCX│
 ENDCAMP.PCX│
 FAILURE.PCX│
 FRONTBG.PCX│
 Frontbgold.pcx│
 Frontend1F.PCX│
 FrontendX.pcx│
 GROMMETS.PCX│
 Hattfont10.PCX│
 Hattfont11.PCX│
 IGButtons.pcx│
 IGMBRIEF.PCX│
 IGOPT0X.PCX│
 IGOPT1X.PCX│
 Igoptintx.pcx│
 igoptionsTEMP.PCX│
 Igoptmusx.pcx│
 Igoptsoux.pcx│
 IgoptTEMP.pcx│
 Igoptvisx.pcx│
 IGPATCH.PCX│
 Installgame.pcx│
 InstallgameJ.pcx│
 Installglam.pcx│
 LOADBAR.PCX│
 Loadgame2bg.pcx│
 LOGOTEST.BMP│
 mbriefarm.pcx│
 mbriefcor.pcx│
 Mission02Win.PCX│
 Mission02Win2.PCX│
 Mission02WinBW.pcx│
 newcampaign4.pcx│
 newcampaign4x.pcx│
 newcamplogos.pcx│
 OptInterface4x.pcx│
 Options4x.pcx│
 Optmusic4x.pcx│
 OptSound4x.pcx│
 OptVisual4x.pcx│
 OUTCOME0.PCX│
 OUTCOME1.PCX│

 playanygame4.pcx│
 Playgame2.pcx│
 Playgame2J.pcx│
 pressedbone.PCX│
 PREVIEW.PIX│
 SAVEGAME.PCX│
 selconnect2.pcx│
 selectgame2x.pcx│
 SINGLEBG.PCX│
 Skirmsetup4x.pcx│
 SMALLDOG.BMP│
 small_cavedog_logo.pcx│
 stagebuttons.pcx│
 STAR.PCX│
 TEMP.PCX│
 temptrans.pcx│
 TITLSCRN.PCX│
 UnitRestrict.pcx│
 UnitRestrict4x.pcx│
 UnitRestrict5x.pcx│
 │

maps└───
 Anteer Strait.ota
 Anteer Strait.tnt
 Ashap Plateau.ota
 Ashap Plateau.tnt
 Caldera's Rim.ota
 Caldera's Rim.tnt
 Coast To Coast.ota
 Coast To Coast.tnt
 Dark Side.ota
 Dark Side.tnt
 Etorrep Glacier.ota
 Etorrep Glacier.tnt
 Evad River Confluence.ota
 Evad River Confluence.tnt
 Fox Holes.ota
 Fox Holes.tnt
 Full Moon.ota
 Full Moon.tnt
 Gods of War.ota
 Gods of War.tnt
 Great Divide.ota
 Great Divide.tnt
 Greenhaven.ota
 Greenhaven.tnt
 Hundred Isles.ota
 Hundred Isles.tnt
 Kill The Middle.ota
 Kill The Middle.tnt
 King of the Hill.ota
 King of the Hill.tnt
 Lava & Two Hills.ota
 Lava & Two Hills.tnt
 Lava Alley.ota
 Lava Alley.tnt
 Lava Highground.ota
 Lava Highground.tnt
 Lava Mania.ota
 Lava Mania.tnt
 Lava Run.ota
 Lava Run.tnt
 Metal Heck.ota
 Metal Heck.tnt
 MULTIPLAY.TDF
 Over Crude Water.ota
 Over Crude Water.tnt
 Painted Desert.ota
 Painted Desert.tnt
 Pincushion.ota
 Pincushion.tnt
 Red Hot Lava.ota
 Red Hot Lava.tnt

 Red Planet.ota
 Red Planet.tnt
 Red Triangle.ota
 Red Triangle.tnt
 Ring Atoll.ota
 Ring Atoll.tnt
 Rock Alley.ota
 Rock Alley.tnt
 Seven Islands.ota
 Seven Islands.tnt
 SHERWOOD.OTA
 SHERWOOD.TNT
 Shore to Shore.ota
 Shore to Shore.tnt
 The Cold Place.ota
 The Cold Place.tnt
 The Desert Triad.ota
 The Desert Triad.tnt
 The Pass.ota
 The Pass.tnt
 Two Continents.ota
 Two Continents.tnt
 Yerrot Mountains.ota
 Yerrot Mountains.tnt

HPI File Format Documentation

(from JoeD)

Warning: This is intended for use by people that already know what they're
doing.

I'm a C programmer, so I'm doing things in C notation here, but I'll try
to explain it so that those of you that don't speak C
will be able to understand. If you don't understand, write me at
joed@cws.org and I'll try to clear things up.

I'm also a big believer in examples, so I'll be walking you through an HPI
file as I explain.

The first part of the file is a header. Except for the copyright
statement at the end, this is the only unencrypted portion of the
file. The header looks like this:

typedef struct _HPIHeader {
 long HPIMarker; /* 'HAPI' */
 long SaveMarker; /* 'BANK' if saved gamed */
 long DirectorySize; /* The size of the directory */
 long HeaderKey; /* Decrypt key */
 long Start; /* File offset of directory */
} HPIHeader;

Here's a hex dump of a sample header:
00000000 48 41 50 49 00 00 01 00 24 02 00 00 7D 00 00 00 HAPI....
$...}...
00000010 14 00 00 00

Taken individually:
HPIMarker This is just a marker. The value is

always HAPI in ASCII. In hex, it's
0x49504148.

SaveMarker If it's a saved game, the value is
BANK in ASCII, or 0x4B4E4142 in hex.
Save game files are something of a
special case, and I haven't done much
to try to decode those. The value in
normal HPI files is 0x00010000, but I
have no idea if this means anything.
I just check for BANK, and ignore it
otherwise.

DirectorySize This is the size of the directory
contained in the HPI file. Here, the
value is 0x224, or 548 bytes. This
includes the size of the header

HeaderKey The decryption key. Its value is
0x0000007D. More on this later.

Start The offset in the file where the
directory starts. I have yet to see
one that didn't start immediately
after the header at offset 0x14, but
you never know.

Now we know enough to read the directory. But first, a small
implementation note. Instead of allocating a buffer of DirectorySize
bytes and then reading the directory into it, allocate a buffer of
DirectorySize bytes, and read DirectorySize-Start bytes into the buffer
at position Start. This is because the directory contains pointers, but
the pointers are relative to the start of the file, not the start
of the directory. By moving the directory down Start bytes into the
buffer, we simplify the program. If we didn't do this, we'd have to
subtract Start from every offset, and that would be a royal pain.

Now some of you are undoubtedly looking at an HPI file with a hex dump
program, and saying "That sure doesn't look like a directory to me!" Well,
you're right. That's because it's encrypted.

To decrypt it, first calculate the decryption key from the HeaderKey
variable:

Key = NOT ((HeaderKey * 4) OR (HeaderKey >> 6))

Doing this on the 0x0000007D, you get FFFFFE0A (I think).

Here is the C code for the decryption routine. Since everything in the
file is encrypted, I found it easier to combine the read and decryption
functions into one.

int ReadAndDecrypt(int fpos, char *buff, int buffsize)
/*
Read "buffsize" bytes from the HPI file at position "fpos" into "buff",
and then decrypt it.
*/
{
 int count;

 int tkey;
 int result;

 /* first, position the file */
 fseek(HPIFile, fpos, SEEK_SET);

 /* read the data into buff */
 result = fread(buff, 1, buffsize, HPIFile);

 /* for each character in buff... */
 for (count = 0; count < buffsize; count++) {

 /* compute tkey = (fpos + count) XOR Key */
 tkey = (fpos + count) ^ Key;

/* and then decode the character:
 buff[count] = tkey XOR (NOT buff[count]) */

 buff[count] = tkey ^ ~buff[count];
 }

 /* result is the number of bytes actually read in,
 and should be equal to buffsize */
 return result;
}

Note that the position of the byte in the file (fpos+count) is used to
decrypt.

And here is a decoded directory to make it easy to follow. Note that I
loaded the actual directory starting at offset 0x14, so that the
first 0x14 bytes are all zeros. See the implementation note above.

All numbers here are 32-bit integers, ie "longs".

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010 00 00 00 00 08 00 00 00 1C 00 00 00 64 00 00 00 d...
00000020 6A 00 00 00 01 97 00 00 00 A0 00 00 00 01 C6 00 j...............
00000030 00 00 CF 00 00 00 01 13 01 00 00 1D 01 00 00 01
00000040 66 01 00 00 6E 01 00 00 01 94 01 00 00 9D 01 00 f...n...........
00000050 00 01 C3 01 00 00 C9 01 00 00 01 EF 01 00 00 F7
00000060 01 00 00 01 61 6E 69 6D 73 00 01 00 00 00 72 00 anims.....r.
00000070 00 00 7B 00 00 00 8E 00 00 00 00 61 72 6D 66 6C ..{........armfl
00000080 61 6B 5F 67 61 64 67 65 74 2E 67 61 66 00 24 02 ak_gadget.gaf.$.
00000090 00 00 D8 2D 00 00 01 64 6F 77 6E 6C 6F 61 64 00 ...-...download.
000000A0 01 00 00 00 A8 00 00 00 B1 00 00 00 BD 00 00 00
000000B0 00 41 52 4D 46 4C 41 4B 2E 54 44 46 00 61 28 00 .ARMFLAK.TDF.a(.
000000C0 00 01 01 00 00 01 66 65 61 74 75 72 65 73 00 01 features..
000000D0 00 00 00 D7 00 00 00 E0 00 00 00 E8 00 00 00 01
000000E0 63 6F 72 70 73 65 73 00 01 00 00 00 F0 00 00 00 corpses.........
000000F0 F9 00 00 00 0A 01 00 00 00 61 72 6D 66 6C 61 6B armflak
00000100 5F 64 65 61 64 2E 74 64 66 00 E3 28 00 00 68 02 _dead.tdf..(..h.
00000110 00 00 01 6F 62 6A 65 63 74 73 33 64 00 02 00 00 ...objects3d....
00000120 00 25 01 00 00 37 01 00 00 43 01 00 00 00 4C 01 .%...7...C....L.
00000130 00 00 5D 01 00 00 00 61 72 6D 66 6C 61 6B 2E 33 ..]....armflak.3
00000140 64 6F 00 39 2A 00 00 7B 14 00 00 01 61 72 6D 66 do.9*..{....armf
00000150 6C 61 6B 5F 64 65 61 64 2E 33 64 6F 00 C9 34 00 lak_dead.3do..4.
00000160 00 1A 11 00 00 01 73 63 72 69 70 74 73 00 01 00 scripts...
00000170 00 00 76 01 00 00 7F 01 00 00 8B 01 00 00 00 41 ..v............A
00000180 52 4D 46 4C 41 4B 2E 43 4F 42 00 67 3F 00 00 E4 RMFLAK.COB.g?...
00000190 09 00 00 01 75 6E 69 74 70 69 63 73 00 01 00 00 unitpics....
000001A0 00 A5 01 00 00 AE 01 00 00 BA 01 00 00 00 41 52 AR
000001B0 4D 46 4C 41 4B 2E 50 43 58 00 B4 42 00 00 91 25 MFLAK.PCX..B...%
000001C0 00 00 01 75 6E 69 74 73 00 01 00 00 00 D1 01 00 ...units........

000001D0 00 DA 01 00 00 E6 01 00 00 00 41 52 4D 46 4C 41 ARMFLA
000001E0 4B 2E 46 42 49 00 89 63 00 00 39 05 00 00 01 77 K.FBI..c..9....w
000001F0 65 61 70 6F 6E 73 00 01 00 00 00 FF 01 00 00 08 eapons..........
00000200 02 00 00 1B 02 00 00 00 61 72 6D 66 6C 61 6B 5F armflak_
00000210 77 65 61 70 6F 6E 2E 74 64 66 00 2D 67 00 00 42 weapon.tdf.-g..B
00000220 02 00 00 01

Let's get started...

00000010 00 00 00 00 08 00 00 00 1C 00 00 00 64 00 00 00 d...
 ^^^^^^^^^^^ ^^^^^^^^^^^

At offset 0x14, you see the number 0x8. This is the number of entries in
the directory. Grabbing the next 32-bit number at
offset 0x18, you get 0x1C. This is the offset of a list of directory
entries. In this case, there are 8 entries in the list. The format of an
entry is:

typedef struct _HPIEntry {
 long NameOffset; /* points to the file name */
 long DirDataOffset; /* points to directory data */
 char Flag; /* file flag */
} HPIEntry;

NameOffset Pointer to the file name. This is
a 0-terminated string of varying
length.

DirDataOffset Pointer to the directory data for
the file. The actual data varies
depending
on whether it's a file or a
subdirectory

Flag If this is 1, the entry is a
subdirectory. If it's 0, it's a
file.

Looking at offset 0x1C, we see:

00000010 64 00 00 00 d...
00000020 6A 00 00 00 01 97 00 00 00 A0 00 00 00 01 C6 00 j...............
00000030 00 00 CF 00 00 00 01 13 01 00 00 1D 01 00 00 01
00000040 66 01 00 00 6E 01 00 00 01 94 01 00 00 9D 01 00 f...n...........
00000050 00 01 C3 01 00 00 C9 01 00 00 01 EF 01 00 00 F7
00000060 01 00 00 01

The 8 entries are:

0x064, 0x06A, 1
0x097, 0x0A0, 1
0x0C6, 0x0CF, 1
0x113, 0x11D, 1
0x166, 0x16E, 1
0x194, 0x19D, 1
0x1C3, 0x1C9, 1
0x1EF, 0x1F7, 1

Let's look at the first entry. The Flag is 1, so it's a subdirectory. At
offset 0x64, we see:

00000060 01 00 00 01 61 6E 69 6D 73 00 01 00 00 00 72 00 anims.....r.
 ^^^^^^^^^^^^^^^^^
or 'anims'. This is the name. Since this is a subdirectory, offset 0x6A
contains the number of entries in the subdirectory,
followed by a pointer to the first entry. This is exactly like the
count/pointer pair at 0x14 that got us started. Think recursion.

00000060 01 00 00 01 61 6E 69 6D 73 00 01 00 00 00 72 00 anims.....r.
 ^^^^^^^^^^^ ^^^^^
00000070 00 00 7B 00 00 00 8E 00 00 00 00 61 72 6D 66 6C ..{........armfl
 ^^^^^

The number at offset 0x6A is a 1, indicating that there's only 1 file in
this subdirectory. 0x6E contains the offset of the first
(and only) entry in the subdirectory, which is:

0x7B, 0x8E, 0

The 0 indicates that this is a file. Looking at offset 0x7B, we see:

00000070 00 00 7B 00 00 00 8E 00 00 00 00 61 72 6D 66 6C ..{........armfl
 ^^^^^^^^^^^^^^
00000080 61 6B 5F 67 61 64 67 65 74 2E 67 61 66 00 24 02 ak_gadget.gaf.$.
 ^^^

or 'armflak_gadget.gaf'. This is the name of the first (and only) file in
the 'anims' subdirectory. Since this is a file, the data at offset
0x8E is a little different.

There are 3 items here instead if one:

typedef struct _HPIFileData {
 long DataOffset; /* starting offset of the file */
 long FileSize; /* size of the decompressed file */
 char Flag; /* file flag */
} HPIEntry;

DataOffset This is the offset in the HPI file
that this file starts at.

FileSize This is the decompressed file size.
When you extract the file, it
should be this many bytes long.

Flag If this is 1, the file is
compressed with LZ77 compression.
If it's 2, it's compressed with
ZLIb compression. If it's 0, it's
not compressed at all. This is the
format used by the unit viewer

.

00000080 61 6B 5F 67 61 64 67 65 74 2E 67 61 66 00 24 02 ak_gadget.gaf.$.
 ^^^^^
00000090 00 00 D8 2D 00 00 01 64 6F 77 6E 6C 6F 61 64 00 ...-...download.
 ^^^^^ ^^^^^^^^^^^ ^^

Looking at offset 0x8E, we see that the three items are:

0x224, 0x2DD8, 1

If you recall, the directory size was 0x224 bytes. This says the file
starts at the first offset after the directory, which makes sense and means
we're interpreting things correctly. This also says that the extracted
file should be 0x2DD8 (or 11,736) bytes long.

At this point, we know enough to actually traverse the directory tree in
the HPI file. Here's a recursive pseudocode function to do it. The
initial call
to it would be 'TraverseTree(".", Header.Start)'.

TraverseTree(string ParentName, int offset)

Entries = Directory[offset]
EntryOffset = Directory[offset+4]

for count = 1 to Entries
 NameOffset = Directory[EntryOffset]
 DataOffset = Directory[EntryOffset+4]
 Flag = Directory[EntryOffset+8]

 Name = ParentName+"\"+Directory[NameOffset]

 print "Processing ",Name

 if Flag = 1
 TraverseTree(Name, DataOffset) <- recursion!
 else
 ProcessFile(Name, DataOffset)
 End If

 EntryOffset = EntryOffset + 9
Next Count

If you code this up in your language of choice and run it, it should print
something like this: (if you haven't guessed already,
the file I'm using as an example is the "Arm Flakker" unit's aflakker.ufo
file)

.\anims

.\anims\armflak_gadget.gaf

.\download

.\download\ARMFLAK.TDF

.\features

.\features\corpses

.\features\corpses\armflak_dead.tdf

.\objects3d

.\objects3d\armflak.3do

.\objects3d\armflak_dead.3do

.\scripts

.\scripts\ARMFLAK.COB

.\unitpics

.\unitpics\ARMFLAK.PCX

.\units

.\units\ARMFLAK.FBI

.\weapons

.\weapons\armflak_weapon.tdf

At this point, I urge you to go look at that directory hex dump and
traverse the thing by hand until it makes sense.

I can hear you now. "What the heck is that 'ProcessFile' function?" It
decodes the file. I'll explain in a bit.

But first, here's a list of the various files in this HPI file, and their
starting offsets.

If you don't understand where I got the starting offsets, go reread the
directory hex dump until you do.

anims\armflak_gadget.gaf 0x0224
download\ARMFLAK.TDF 0x2861
features\corpses\armflak_dead.tdf 0x28E3
objects3d\armflak.3do 0x2A39
objects3d\armflak_dead.3do 0x34C9
scripts\ARMFLAK.COB 0x3F67
unitpics\ARMFLAK.PCX 0x42B4
units\ARMFLAK.FBI 0x6389
weapons\armflak_weapon.tdf 0x672D

Because it's a short file, and because it decodes to readable text, I'm
going to use the ARMFLAK.TDF file as the example.

If the file was not compressed at all, then the file is just inserted into
the HPI file as one big chunk.

But if it is...

This is where the -REAL- fun begins. I'm going to take it slow here
because I'm still half figuring it out myself (writing this
has actually made me realize some things that I hadn't before).

When the file was compressed, it was broken up into chunks of 64K (65536)
bytes each, plus one more chunk to hold anything left over. Each chunk
was then compressed. Note that some chunks are larger when compressed
than decompressed, which means that some compressed chunks can be larger
than 64K.

The total number of chunks in the file can be obtained by the following
formula:

chunks = Entry.FileSize / 65536
if (Entry.FileSize mod 65536) <> 0
 chunks = chunks + 1

The offset in the directory points to a list of 32-bit numbers that are
the compressed sizes of each compressed chunk of data.

Following the list of sizes are the actual compressed chunks of data.

In this HPI file, each file has only one chunk, but the totala1.hpi file
contains some files with a dozen or so, and the hpi files on the CDs have
files in them with over a hundred.

Going to offset 0x2861, we read in a chunk o'data and decrypt it to find
this:

00002860 7E 00 00 00 53 51 53 48 02 01 01 6B 00 00 00 .~...SQSH...k...
00002870 01 01 00 00 FE 36 00 00 20 5B 51 49 4E 55 3C 0E 6.. [QINU<.
00002880 64 64 94 5D 49 5D 11 14 29 7B D5 26 18 55 6E 75 dd.]I]..){.&.Unu
00002890 64 54 34 41 79 6C 9C 71 81 83 8B 3B 59 49 CB 4D dT4Ayl.q...;YI.M
000028A0 43 D1 42 54 9A A5 A8 AA AF B0 B8 64 61 AC 6D B0 C.BT.......da.m.
000028B0 B1 82 72 34 79 B8 B0 BD DD A3 82 81 E8 86 AC 89 ..r4y...........
000028C0 98 92 C2 CF 98 EB 9D E0 56 BF A2 6F AB 5F A8 96 V..o._..
000028D0 B5 C3 9F B8 EB B9 BE 7D 4F C7 5F CE 2F D1 4C D1 }O._./.L.
000028E0 D0 D2 90

The decompressed file size of ARMFLAK.TDF is 257 bytes. This tells us
that there's only one chunk. The size of this chunk is 0x7E bytes. The
chunk itself immediately follows.

Each chunk looks like this:

typedef struct _HPIChunk {
 long Marker; /* always 0x48535153 (SQSH) */
 char Unknown1;
 char CompMethod; /* 1=LZ77, 2=ZLib */
 char Encrypt; /* is the block encrypted? */
 long CompressedSize; /* the length of the compressed data */
 long DecompressedSize; /* the length of the decompressed data */
 long Checksum; /* Checksum */
 char data[]; /* 'CompressedSize' bytes of data */
} HPIChunk;

Marker This is the start-of-chunk marker,
and is always 0x48535153 (ASCII
'SQSH').

Unknown1 I know not what this is for. It's
always 0x02.
Maybe some sort of version number?

CompMethod This is the compression method.
It's 1 for LZ77, 2 for ZLib.

Encrypt This tells whether the block is
encrypted a second time. See
below.

CompressedSize This is the size of the compressed
data in the chunk. 0x6B bytes.

DecompressedSize This is the size of the
decompressed data in the chunk.
0x101 bytes.

Checksum
This is a checksum of the data.
It's merely the sum of all the
bytes of
data (treated as unsigned numbers)
added together

data The actual compressed data in the

chunk. CompressedSize (0x6B) bytes
of it.

Let's look at the data.

00002870 20 5B 51 49 4E 55 3C 0E 6.. [QINU<.
00002880 64 64 94 5D 49 5D 11 14 29 7B D5 26 18 55 6E 75 dd.]I]..){.&.Unu
00002890 64 54 34 41 79 6C 9C 71 81 83 8B 3B 59 49 CB 4D dT4Ayl.q...;YI.M
000028A0 43 D1 42 54 9A A5 A8 AA AF B0 B8 64 61 AC 6D B0 C.BT.......da.m.
000028B0 B1 82 72 34 79 B8 B0 BD DD A3 82 81 E8 86 AC 89 ..r4y...........
000028C0 98 92 C2 CF 98 EB 9D E0 56 BF A2 6F AB 5F A8 96 V..o._..
000028D0 B5 C3 9F B8 EB B9 BE 7D 4F C7 5F CE 2F D1 4C D1 }O._./.L.
000028E0 D0 D2 90

Doesn't look like much, does it. That's because (YOU GUESSED IT!) it's
encrypted yet again! Note: the checksum is calculated BEFORE this
decryption.

The 'Encrypt' field in the HPIChunk header is set to 1 to indicate that
this decryption needs to be done.

To decrypt, do this (more pseudocode):

for x = 0 to CompressedSize-1
 data[x] = (data[x] - x) XOR x
next x

This gives us:

00002870 20 5B 4D 45 4E 55 30 00 [MENU0.
00002880 54 52 80 59 31 5D 0D 0A 09 7B D1 00 10 55 4E 49 TR.Y1]...{...UNI
00002890 54 22 00 3D 41 52 60 4D 41 43 4B 3B 11 01 83 01 T".=AR`MACK;....
000028A0 33 81 32 02 42 55 54 54 4F 4E B4 02 19 42 01 4E 3.2.BUTTON...B.N
000028B0 41 70 02 C2 01 46 4C 41 DD 23 02 7D E0 04 20 05 Ap...FLA.#.}.. .
000028C0 18 00 32 CF 00 D3 01 DE 56 3F 02 4F 03 5F 04 68 ..2.....V?.O._.h
000028D0 05 33 1F 06 D3 01 3E 41 8F 07 9F 08 AF 09 80 0D .3....>A........
000028E0 00 00 4C ..L

Woohoo! Look! Readable word fragments! But remember, the chunk is still
compressed.

In this case, the block is compressed with LZ77, since CompMethod is 1.

The compression algorithm is a very basic sliding window compression
scheme from the LZ77 family using a 4095 byte history and matches from 2
to 17
bytes long.

The first byte is kind of a "tag" byte which determines if the next eight
pieces of data are literal bytes or history matches. Starting with the
least-significant bit, this tag byte is scanned to figure out what to do.

When the current bit is a zero, the next byte of the input is transferred
directly to the output and added to end of the history buffer.

When the current bit is a one, the next two bytes taken from the input are
used as a offset/length pair. The upper 12 bits are the offset into the
history buffer and the lower 4 bits are the length. If the offset is
zero, the end of the input data has been reached and the decompressor
simply exits.

Since we can assume that there will be no matches with a length of zero or
only one byte, any match is a mimimum of two bytes so we just add two
to the length which extends our range from 0-15 to 2-17 bytes.

The match is then copied from the history buffer to the output and also
added onto the end of the history buffer to keep it in sync with the
output.

When all eight bits of the tag byte have been used, the mask is reset and
the next tag byte is loaded.

Here is some decompress code:

int Decompress(char *out, char *in, int len)
{
/*
 Decompress buffer "in" of size "len" into buffer "out" (previously allocated) returns the
number of decompressed bytes.
*/

 int x;
 int outbufptr;
 int mask;
 int tag;
 int inptr;
 int outptr;
 int count;
 int done;
 char Window[4096];
 int inbufptr;

 for (x = 0; x < len; x++) {
 in[x] = (in[x] - x) ^ x;
 }

 done = FALSE;

 inptr = 0;
 outptr = 0;
 outbufptr = 1;
 mask = 1;
 tag = in[inptr++];

 while (!done) {
 if ((mask & tag) == 0) {
 out[outptr++] = in[inptr];
 Window[outbufptr] = in[inptr];
 outbufptr = (outbufptr + 1) & 0xFFF;
 inptr++;
 }
 else {
 count = *((unsigned short *) (in+inptr));
 inptr += 2;
 inbufptr = count >> 4;
 if (inbufptr == 0)
 return outptr;
 else {
 count = (count & 0x0f) + 2;
 if (count >= 0) {
 for (x = 0; x < count; x++) {
 out[outptr++] = Window[inbufptr];
 Window[outbufptr] = Window[inbufptr];
 inbufptr = (inbufptr + 1) & 0xFFF;
 outbufptr = (outbufptr + 1) & 0xFFF;
 }

 }
 }
 }
 mask *= 2;
 if (mask & 0x0100) {
 mask = 1;
 tag = in[inptr++];
 }
 }
 return outptr;
}

When fed the data, the routine spits out:

00000000 5B 4D 45 4E 55 45 4E 54 52 59 31 5D 0D 0A 09 7B [MENUENTRY1]...{
00000010 0D 0A 09 55 4E 49 54 4D 45 4E 55 3D 41 52 4D 41 ...UNITMENU=ARMA
00000020 43 4B 3B 0D 0A 09 4D 45 4E 55 3D 33 3B 0D 0A 09 CK;...MENU=3;...
00000030 42 55 54 54 4F 4E 3D 33 3B 0D 0A 09 55 4E 49 54 BUTTON=3;...UNIT
00000040 4E 41 4D 45 3D 41 52 4D 46 4C 41 4B 3B 0D 0A 09 NAME=ARMFLAK;...
00000050 7D 0D 0A 0D 0A 5B 4D 45 4E 55 45 4E 54 52 59 32 }....[MENUENTRY2
00000060 5D 0D 0A 09 7B 0D 0A 09 55 4E 49 54 4D 45 4E 55]...{...UNITMENU
00000070 3D 41 52 4D 41 43 56 3B 0D 0A 09 4D 45 4E 55 3D =ARMACV;...MENU=
00000080 33 3B 0D 0A 09 42 55 54 54 4F 4E 3D 33 3B 0D 0A 3;...BUTTON=3;..
00000090 09 55 4E 49 54 4E 41 4D 45 3D 41 52 4D 46 4C 41 .UNITNAME=ARMFLA
000000A0 4B 3B 0D 0A 09 7D 0D 0A 0D 0A 5B 4D 45 4E 55 45 K;...}....[MENUE
000000B0 4E 54 52 59 33 5D 0D 0A 09 7B 0D 0A 09 55 4E 49 NTRY3]...{...UNI
000000C0 54 4D 45 4E 55 3D 41 52 4D 41 43 41 3B 0D 0A 09 TMENU=ARMACA;...
000000D0 4D 45 4E 55 3D 33 3B 0D 0A 09 42 55 54 54 4F 4E MENU=3;...BUTTON
000000E0 3D 33 3B 0D 0A 09 55 4E 49 54 4E 41 4D 45 3D 41 =3;...UNITNAME=A
000000F0 52 4D 46 4C 41 4B 3B 0D 0A 09 7D 0D 0A 0D 0A 0D RMFLAK;...}.....
00000100 0A .

Yay! Clear decoded text. Write this chunk out, and go get the next one.
When there are no more chunks, close the file, and go process the next one.

To recompress, do something like the following:

 WHILE look ahead buffer is not empty
 find a match in the window to previously output data
 IF match length > minimum match length
 output reference pair
 move the window match length to the right
 ELSE
 output window first data item
 move the window one to the right
 ENDIF
 END

If CompMethod is 2, use ZLib compression to decompress the block. You can
get the zlib source code from the zlib home page at
http://www.cdrom.com/pub/infozip/zlib/

FBI Commands

By MartiD@worldnet.att.net

In the FBI tables, “0” means “off”, “1” means “on” and a “?” denotes an
unknown use or entry.

mailto:MartiD@worldnet.att.net

Editable Categories

Unit Name the name of the unit
Version ?
Side the side it is on
Objectname I think is the internal name for the unit
Designation Name the name you see when you put the mouse over the

unit
Description the description of the unit
Footprint X the footprint going ne way
Footprint Z the foot print going the over way
BuildCostEnergy how much energy it takes to build it
BuildCostMetal how much metal you need to build it
MaxDamage how much damage the unit can take
MaxWaterDepth how deep it can go in water
MaxSlope how much of a slope it can be built on and go

over?
EnergyUse how much energy it needs to do things
BuildTime how long it takes to build it
WorkerTime how fast it will build some thing
Bmcode ? You probably don't want to mess with this
Builder I think if it can build things or not
ThreeD if its a 3D unit
ZBuffer some thing to do with the graphics you probably

don't want to mess with this
NoAutoFire If the unit has no auto fire
SightDistance how far it can see
RadarDistance how far they radar will go
SoundCategory ?
EnergyStorage how much energy that unit can hold leave it blank

for the commander
MetalStorage same as above but for metal
ExplodeAs how big the explosion is when your unit dies
SelfDestructAs how big the explosion is when you make the unit

self distruct
Category what type of unit it is ?
TEDClass you probably don't want to mess with it
CopyRight the annoying Cavedog copy right
YardMap ?
Corpse what the wreckage looks like
GermanName what the name of the unit is in German
GermanDescription the description in German
UnitNumber the number of the unit
FrenchName the name of the unit in French
FrenchDescription the description in French
firestandorders ?
StandingFireOrder ?
mobilestandorders ?
StandingMoveOrders ?
canmove the unit can move
canpatrol the unit can patrol
canstop the unit can stop what ever its doing
canguard the unit can guard another unit
MaxVelocity ?

BrakeRate how fast the unit can stop
Acceleration how fast the unit can speed up
TurnRate how fast the unit can turn
SteeringMode how it steers
ShootMe ?
CanFly the unit can fly if you put a 1
crusisealt ?
Scale ?
BankScale ?
Builddistance how far the unit can be away from the unit to

start building
CanReclamate can reclaim?
EnergyMake how much energy the unit makes
MetalMake how much metal the unit makes
DefaultMissionType ?
manuverleashlength how for the unit can go when you put the orders to

maneuver
MovementClass how it moves like a Kbot?
Upright if the unit stands up or not
standingmoveorders ?
buildangle what angle it can build at or what angle it can be

built at
Weapon1 the primary weapon
wpri_badTargetCategory what kind of unit the primary weapon is not go at

killing
BadTargetCategory the kind of units that the unit is not go at

killing
antiweapons ?
DamageModifier if the unit will repair its self
canattack the unit can attack another unit
ActivateWhenBuilt the unit is activated after is built
onoffable the unit can be turned off and on
RadarDistanceJam the area the unit will jam
sortbias ?
IsAirBase ?
MinWaterDepth the depth that the water has to be to go there
WaterLine ?
NoShadow the unit wont have a shadow
TransMaxUnits the max amount of units that it can carry
canload the unit can load other units
transportsize ?
Weapon2 the second weapon
wsec_badTargetCategory the group that the second weapon has trouble

killing
Floater if the unit floats?
NoChaseCategory the type of unit that it wont chase
HoverAttack if the unit will hover while attacking
Weapon3 the third weapon
SonarDistance the distance of the units sonar
candgun they unit can dgun
CloakCost the cost of cloaking the unit
CloakCostMoving the cost of cloaking that unit while its moving
HealTime how long it takes to heal that unit
CanCapture if they unit can capture or not
HideDamage if the other players can see if that unit is about

to die

ImmuneToParalyzer immune to paralyzer
norestict ?
IsFeature ?
PigLatinName the name in Pig Latin
SpanishName the Spanish name
ItalianName the name in Itlian
JapaneseName the name in Japanese
PigLatinDescription the description in PigLatin
MoveRate1 ?
teleporter if the unit can teleport
Stealth if the unit is stealth
MakesMetal if the unit makes metal
ExtractsMetal if the unit extracts metal
altfromsealevel ?
attackrunlength
Waterline ?
TidalGenerator if it is a tidal generator
transportmaxunits the max amount of units that it can transport
kamikaze if it's a kamikaze
WindGenerator if it's a wind generator
MobileStandOrders ?
BuildAngle the angle that it can build at or the angle it can

be built at
PitchScale ?
MoveRate2 ?

ARM Abbreviations

ARMAAP Advanced Aircraft Plant
ARMACA Advanced Construction Aircraft
ARMACK Advanced Construction Kbot
ARMACV Advanced Construction Vehicle
ARMALAB Advanced Kbot Lab
ARMAMD Fortitude Anti-nuke
ARMANNI Annihilator
ARMAP Aircraft plant
ARMARAD Advanced Radar Tower
ARMASER Eraser
ARMASP Air Repair Pad
ARMASY Advanced Ship Yard
ARMATLAS Atlas
ARMAVP Advanced Vehicle Plant
ARMBATS Millenium
ARMBRAWL Brawler
ARMBRTHA Big Bertha
ARMBULL Bulldog
ARMCA Construction Aircraft
ARMCARRY Colossus
ARMCK Construction Kbot
ARMCROC Triton
ARMCRUS Conqueror
ARMCS Construction Ship
ARMCV Construction Vehicle
ARMDRAG Dragons Teeth

ARMESTOR Energy Storage
ARMFAST Zipper
ARMFAV Jeffy
ARMFIDO Fido
ARMFIG Freedom Fighter
ARMFLASH Flash
ARMFUS Fusion Plant
ARMGEO Geothermal Plant
ARMGUARD Guardian
ARMHAM Hammer
ARMHAWK Hawk
ARMHLT Sentinel
ARMJAM Jammer
ARMJETH Jethro
ARMLAB Kbot Lab
ARMLANCE Lancet
ARMLLT Light Laser Tower
ARMMAKR Metal Maker
ARMMART Luger
ARMMERL Merl
ARMMEX Metal Extractor
ARMMOHO Moho Mine
ARMMSHIP Ranger
ARMMSTOR Metal Storage
ARMPEEP Peeper
ARMPNIX Phoenix
ARMPT Skeeter
ARMPW Peewee
ARMRAD Radar Tower
ARMRL Defender
ARMROCK Rocko
ARMROY Crusader
ARMSAM Samson
ARMSEER Seer
ARMSILO Retaliator
ARMSOLAR Solar Collector
ARMSONAR Sonar Station
ARMSPID Spider
ARMSTUMP Stumpy
ARMSUB Lurker
ARMSUBK Piranha
ARMSY Ship Yard
ARMTHUND Thunder
ARMTIDE Tidal Generator
ARMTL Torpedo Launcher
ARMTSHIP Hulk
ARMVADER Invader
ARMVP Vehicle Plant
ARMWIN Wind Generator
ARMZEUS Zeus
ARMCOM Commander
ARMGATE Galactic Gate

CORE Abbreviations

CORAAP Advanced Aircraft Plant
CORACA Advanced Construction Aircraft
CORACK Advanced Construction Kbot
CORACV Advanced Construction Vehicle
CORAK A.K.
CORALAB Advanced Kbot Lab
CORAP Aircraft Plant
CORAPE Rapier
CORARAD Advanced Radar Tower
CORASP Air Repair Pad
CORASY Advanced Ship Yard
CORAVP Advanced Vehicle Plant
CORBATS Warlord
CORCA Construction Aircraft
CORCAN The Can
CORCARRY Hive
CORCK Construction Kbot
CORCRASH Crasher
CORCRUS Executioner
CORCS Construction Ship
CORCV Construction Vehicle
CORDOOM Doomsday Machine
CORDRAG Dragons Teeth
CORESTOR Energy Storage
CORETER Deleter
CORFAV Weasel
CORFINK Fink
CORFMD Fortitude Anti-nuke
CORFUS Fusion Plant
CORGATOR Instigator
CORGEO Geothermal Plant
CORGOL Goliath
CORHLT Gaat Gun
CORHURC Hurricane
CORINT Intimidator
CORLAB Kbot Lab
CORLLT Light Laser Tower
CORMAKR Metal Maker
CORMART Pillager
CORMEX Metal Extractor
CORMIST Slasher
CORMOHO Moho Mine
CORMSHIP Hydra
CORMSTOR Metal Storage
CORPT Searcher
CORPUN Punisher
CORPYRO Pyro
CORRAD Radar Tower
CORRAID Raider
CORREAP Reaper
CORRL Pulverizer
CORROACH Roach
CORROY Enforcer
CORSEAL Crock

CORSHAD Shadow
CORSHARK Shark
CORSILO Silencer
CORSOLAR Solar Collector
CORSONAR Sonar Station
CORSPEC Spectre
CORSTORM Storm
CORSUB Snake
CORSY Ship Yard
CORTHUD Thud
CORTIDE Tidal Generator
CORTITAN Titan
CORTL Torpedo Launcher
CORTSHIP Envoy
CORVALK Valkyrie
CORVAMP Vamp
CORVENG Avenger
CORVP Vehicle Plant
CORVRAD Informer
CORVROC Diplomat
CORWIN Wind Generator
CORCOM Commander
CORGATE Galactic Gate
CORBUILD Hydration Plant
CORTRUCK Truck

BOS Functions

Distances are in meters and Angles are in degrees

Cache [Object]; Disable texture animation
(default = disabled)

Call-Script [Script]([Parameters]); Call a script

Dont-Cache [Object]; Enable texture animation
(default = disabled)

Dont-Shade [Object]; Disable shading (default for
building = enabled; default for
moving units = disabled)

Emit-Sfx [Type] from [Object]; Emit a SFX (fire or bubbles)
from a point (pointbased) or
from a vertex (vectorbased)

Explode [Object] [Type]; Explode an object

Get [SysVar]; Get a sysvar like
BUILD_PERCENT_LEFT

Hide [Object]; Hide an object (default = all
objects shown)

Move [Object] to [Axis] [Position] Speed
[Speed];

 Move an object along a selected
axis (?-axis) with selected
speed

Move [Object] to [Axis] [Position] Now; Move an object immediatly

Return [Value]; Return to selected value

Set [SysVar] To [Value]; Set a sysvar to a value (ex :
SET ARMORED TO TRUE)

Set-Signal-Mask [Signal]; Set an ID (0 , 2 , 4 , 8 ,
etc..) for the signal mask. this
is how the script can be killed.

Shade [Object]; Enable shading (default for
building = enabled; default for
moving units = disabled)

Show [Object]; Show an object (default = all
objects shown)

Signal [Signal]; Emit a signal (0 , 2 , 4 , 8 ,
etc..) to kill script with same
signal-mask

Sleep [Time]; make a little pause between 2 or
more events

Spin [Object] Around [Axis] Speed [Speed]
Accelerate [Acceleration];

 start spinning a object

Spin [Object] Around [Axis] Speed [Speed]; spin an object directly to max
speed

Start-Script [Script]([Parameters]); Start a script

Stop-Spin [Object] Around [Axis] Decelerate
[Deceleration];

 stop spinning an object with
deceleration

Stop-Spin [Object] Around [Axis]; stop spinning an object
immediatly

Turn [Object] to [Axis] [Bearing] Speed
[Speed];

 turn an object

Turn [Object] to [Axis] [Bearing] Now; turn an object immediatly

Wait-For-Move [Object] Along [Axis]; Wait until selected object has
finished moving along selected
axis

Wait-For-Turn [Object] Around [Axis]; Wait until selected object has
finished turning around selected
axis

Still not tried :

Attach-Unit [Unit] To [Object]; Attach a Unit to selected object

Drop-Unit [Unit]; Drop unit

Jump [Destination]; Jump if ([Value] == False)
[Destination];

Rand([Min], [Max]);
 Randomize a static-var value .
still not supported by the cobble

BOS Script Tutorial – TA

(written by Alakhbar)

Firstly let me break down the BOS file into its componets here. For all
you C programmers, this is very much like C but in its basic form. This is
a general format for the BOS file.

piece This lists most of the functions I
have looked up in the BOS files in
totala.hpi. Mainly I will be
using the arm battleship.bos file
for examples but I will try and
cover the ones here as best as I
can.
I will also try to cover 2 topics
here. The building functions and
the transport functions.

Anyways lets get started with the
first one, "piece". This one tells
TA which objects will be
affected by the script. Such as
"base" for the sweetspot() or
"wake" for the bubble animations
for
ships and of course "beam" for the
nano sprays. A general rule of
thumb is any object that is used to
aim with, emits a special effect
(like smoke, bubbles, vtol flame,
or nano spray), or creates that
flash effect from cannon barrels
gets put in here. The format for
this is:

piece base, flare, wake1, wake2,
turret;

Dont forget the colon. Its a C
thing that symbolized end of
statement. As you can see the
names after "piece" are objects
from the 3do file.

static-var
#define
#include
Create()
StartMoving()
StopMoving()
AimPrimary(heading,pitch)
AimSecondary(heading,pitch)
AimTetriary(heading,pitch)
AimFromPrimary(piecenum)
AimFromSecondary(piecenum)
AimFromTetriary(piecenum)
QueryPrimary(piecenum)
QuerySecondary(piecenum)
QueryTetriary(piecenum)
QueryNanoPiece(piecenum)
Activate()
Deactivate()
StartBuilding()
StopBuilding()
QueryBuildInfo(piecenum)
Demo()
QueryTransport(piecenum)
BeginTransport(height)
EndTransport()
SweetSpot(piecenum)
Killed()

static-var

This item is where you would put variables that change in the bos file.
Say you wanted to alter fire between 3 barrels on a turret like how the
battleship does, you would put that variable name here. That way it gets
initialized and tells TA that this variable is going to store variables.
Let me run through an example of the armbats.bos file for its primary
turret.

static_var next_barrel1;

.....

FirePrimary()

{
if (next_barrel1==1)

{
.....
}

if (next_barrel1==2)
{

}

if (next_barrel1==3)
{
.....
}

next_barrel1=next_barrel1+1;
if (next_barrel1==4)

{
nextbarrel1=1;
}

}

A little note on the ";"

Notice how on most of the items
here that they
dont have a ";" after them? Thats
because these aren’t statements
like the one on the bottom,

next_barrel1=next_barrel1+1;.
The FirePrimary() is a function and
the if (next_barrel1==1) is a
comparison statement. They dont
get a ";" at the end of them. Also
notice the brackets "{" and "}".
They also enclose statements. Each
bracket that starts with a "{" must
end with a "}" as in the example to
the left.

This is another part of C language
here. You would use these in its
basic form like below:

FirePrimary()
{
show flare1a;
sleep 150;
hide flare1a;
}

where the brackets "{" and "}"
enclose all the statements in the
FirePrimary() function call. A more
complex version is like the one to
the left.

The "..." just means that there was additional information there that
didn’t need to be typed up here.

As you can see by the "if" comparisons that its using the static-var
"next_barrel1" to see if it should run the statement below it. It is also
incremented at the bottom by the statement "next_barrel1=next_barrel1+1".
Also I need to note here that the difference between the "=" and the "=="
thing is another C expression that means this. "=" means that a variable
will have a variable of whatever you put after it and the "==" is used for
comparisons like they are used in the "if" statements listed above. If you
put "if (next_barrel1=1)" all it will do is say "see if next_barrel1 is
equal to 1, but first set next_barrel1 to be equal to 1, now compair".

static-var only holds variables. Thats all this does. TA can distinguish
which variable is assigned to which unit so dont worry about having 30
battleships in the game and it being confused as to which turret is being
assigned a variable and stuff.

#define

This confusing little thing is what you would use to define signals and
animation variables. Yea confusing isn’t it? Here’s an example, again of
the armbats.bos file:

...
#define SIG_AIM1 2
#define SIG_AIM2 4
#define SIG_WAKE 8
#define SMOKEPIECE1 base
...
aim at

This is going to be confusing so I
will start with the first 3 items
to the left. SIG is a signal which
uses a value to separate them so
they are independent, like how
these 3 are.

What a signal does is stop a
function from doing an action so
that it can be restarted or
stopped. The reason this is done
is because say a battleship is
aiming its turrets at a target, if
the SIG isnt there then the turrets
wont be able to re another target
until the first target is dead. I
believe this is what it does. I
haven’t tested a unit without them
so I am uncertain as to if this is
true.

Also the numbers next to them are
what make the signals independant
to one another. So say if SIG_AIM1
and SIG_AIM2 were both 2, then when
the signal was sent to SIG_AIM1 to
stop aiming, SIG_AIM2 would also be
halted, even if it wasnt finished
aiming (again I think this is what
happens on overlapping signal
numbers).

"SMOKEPIECE1 base" means that the
object name "base" is where the
smoke will eminate
from when the unit is badly
damaged. You can have more pieces
smoke by telling it like say
you want the turret to smoke also.
It would be "#define SMOKEPIECE1
base" then below that
"#define SMOKEPIECE2 turret1".

Another #define item is
ANIM_VARIABLE TRUE. This tells TA
that within the BOS file
there are statements dealing with
how the item is deactived and
activated. Like how the Brawler
tucks in its wings when it lands or
how the buildings open and close

themselves up for building stuff.
Again these are just signals that
allow a process to stop and be
restarted.

Notice also that the #defines dont
use a ";" at the end of them.

#include

Basically this just includes other scripts that are to go along with the
regular bos file. The cobbler has a hard time, I think, in using path
names. My suggestion is to change them to just a simple file name and keep
the bos file, all the .h files and the Cobbler in the same directory. The
format for this is:

#include "SFXtype.h"
#include "smokeunit.h"
#include "exptype.h"

Thats all the #include does is include files when the Cobbler compiles the
BOS script. Also notice that the file names are surrounded by a " and that
there is no ; at the end of these either. They are called using the
statement "start-script 'function name'();" like, for example, the
function inside smokeunit.h would be "start-script SmokeUnit();".

Create()

This is a function and what it does is tell TA what to do when the unit is
completed. Any variable names that were used in static-var get
initialized in here and any animations like the radar on top of the
carrier and aircraft plants get placed in here as well. Its also a good
idea to put the "start-script Smokeunit();" call in here as well so its
ready to go when the unit is damaged, even while it was being built.

Create()

{
hide flare1a;
hide flare1b;
hide flare1c;
hide flare2a;
hide flare2b;
hide flare2c;
next_barrel1=1;
next_barrel2=1;
start
}

script SmokeUnit();

As you can see the armbats.bos file
here hides
all the flares that are shown when
the cannons are fired and the
next_barrel1=1; variables are
initialized in here as well.

Every unit must have this, even if
there isn’t anything done to the
unit like the dragon teeth. It
still needs this part.

Create()

{
padflip = 0;
start

script SmokeUnit();
while(get BUILD_PERCENT_LEFT)

{
sleep 1000;

}
spin radar around y

axis speed <60>;
}

var

Take a look here. This is the
Create() function for the
armcarry.bos file. Again the
variable padflip is initialized the
start script SmokeUnit(); is called
and below that a "while" condition
is called. This "while" condition
prevents the next line, which spins
the radar, from starting until the
BUILD_PERCENT_LEFT is completed.
If you didnt have this, the radar
would be spinning while the unit
was being built.

The "padflip = 0;" statement is
just a static
that is just being initialized.

--

StartMoving()

Generally, k-bots, ships, and subs use this function to either show the
wakes from ships and subs, or tell TA that the k-bot is walking. I havent

seen any use of these in vehicles or aircraft in their BOS files. Anyways
for vessels a typical setup would be this:

--
StartMoving()

{
signal SIG_WAKE;
set

mask SIG_WAKE;
while (TRUE)

{

emit

emit
sleep 300;
}

}

See the "signal SIG_WAKE;" call?

This tells the unit that if its
changing its direction to restart
the script. The signal function
"StopMoving()" will have the call
to stop the wake bubble animation.
"set signal
sfx SFXTYPE_WAKE1 from wake1; sfx
SFXTYPE_WAKE1 from wake2; mask" is
what allows itself to be killed by
another "signal" call.

All this does is create the wake
bubbles from a ship while its
moving.

The statement "while (TRUE)" means that if the signal hasnt been killed
off, to continue with the following statements below it that are enclosed
in brackets "{ }". "emit-sxf SXFTYPE_WAKE1 from wake1;" is what makes the
bubbles and "wake1" is the object name in the 3do file. The delay, "sleep
300" means to not repeat the above statements for 300 ticks (I think) so
that the bubbles arnt overlapping themselves and stuff.

For the k-bots, the only thing I've found is a boolean expression to
indicate if the unit is moving or not. Its used in another function
called "MotionControl()" which houses all the information for aiming
certain parts like the nanobeams and such. Anyways, what k-bots use is:

static var bMoving;

.....

StartMoving()

{
bMoving = TRUE;
}

Pretty straight forward here. Its
just using the static var of Moving
to show the "MotionControl()"
function that the unit is moving.
You could pass this to another
function, say the "Deactivate()"
function by giving it a condition
like "if (bMoving)".

StopMoving()

This is just the opposite of "StartMoving()" and it is used the same way
as the "StartMoving()" function call but what its used for is to send
signals, like this:

StopMoving()
{
signal SIG_WAKE;

}

For ships and subs, all this is
doing is killing off the animation
bubbles that were started in the
"StartMoving()" function.

You dont need the "set signal mask"
statement in here because its
already set by the "StartMoving()"
function.

The k-bot script would use:

StopMoving()
{
bMoving = FALSE;
}

No signal call here, just the
variable set to FALSE so the
variable can be compaired in
another function.

**

AimPrimary(heading,pitch)
AimSecondary(heading,pitch)
AimTetriary(heading,pitch)
**

Turret aiming galore! Yup thats what this function does is aim the turret
and the barrels (if any) towards their target. Turret based weapons need
this. If you are unsure about needing this, check the "weapons.tdf" file
and look for the item "turret=1" for the weapon you want to use. If thats
true then you definitely will need this.

Using the armbats.bos file for an example, the format is:

AimPrimary(heading,pitch)

{
signal SIG_AIM1;
set signal

mask SIG_AIM1;
turn turret1 to y

signal
axis heading speed <55>;

turn turret1 to x
axis (0 pitch) speed <30>;

wait for
turn turret1 around y axis;

wait for
turn turret1 around x axis;

return(TRUE);
}

Again like in the "StartMoving()"
function we have the signal

calls here but for SIG_AIM1
instead. There isn’t another
function that stops the SIG_AIM1,
its done in here because the weapon
is constantly being aimed and it
can be reaimed at another target
because it has the "set mask"
statement in here.

I think the last statement,
"return(TRUE);" is kinda like a
condition where the unit wont stop
aiming until it has the proper aim
towards its target, then it goes on
to the next phase... FIRING!!!

Anyways the line "turn turret1 to y-axis heading speed <55>;". "turn", of
course, means turn or rotate around an axis. "turret1" is the object as
named in the 3do file. "to y-axis" means around y-axis. Thats confusing.
"heading" is the number that is passed from the function
"AimPrimary(heading,pitch)", its the direction of the target to "turret1".
Or in naval terms, bearing. "speed <55>" is the speed setting of the
object that will rotate in this statement.

A little note on "passing". This is a C thing where in a function
name (such as in "AimPrimary(heading,pitch)") a value or set of values can
be sent from the main program, through this function and used in the
statements inside of it. Since the main program of TA already initializes
and uses the variables "heading" and "pitch", you dont need to define them
in the static-var part of your bos file.

You will notice here that the next line "turn turret1 to x-axis (0-pitch)
speed <30>;" is using the "turret1" object to elevate the barrels of the
turret along the x-axis. This I dont like because all the barrels are
being aimed at the same time but I guess in the game you cant tell the
difference. Everything is the same here exept for the (0-pitch) number. It
gets this number exactly like how it got the "heading" number, passed from
the function name of "AimPrimary(heading,pitch)". The (0-pitch) sets the
angle to where a projectile weapon will fire and since gravity is an issue
in this game, it uses this format. I think this is how it will turn
negative numbers into positive elevations. Again we have the speed setting
by "speed <30>".

In the units .fbi file, AimPrimary is Weapon1, AimSeconday is
Weapon2, and AimTetriary is Weapon3. I dont know what Weapon4 is though.

AimFromPrimary(piecenum)
AimFromSecondary(piecenum)
AimFromTetriary(piecenum)

All this function does is set which object is going to be used to aim
with. The format for this is:

AimFromPrimary(piecenum)

{
piecenum=turret1;
}

AimFromSecondary(piecenum)

{
piecenum=turret2;
}

Again, turreted weapons need to
have this so TA knows what object
to use to get the "heading" and
"pitch" angles from.

We have the "passed" variables here
but they are going the other way,
"piecenum" is being defined here
and in the TA main program it will
have that information from this
function.

That’s all this function does.

QueryPrimary(piecenum)
QuerySecondary(piecenum)
QueryTetriary(piecenum)

Dont let the name fool you. These functions are what actually fires the
weapon. TA asks "what object do I use to launch the weapon from?" and
they are usually the objects named FLARE.

The format for this is:

QueryPrimary(piecenum)
{
piecenum=flare1a;
}

QuerySecondary(piecenum)

{
piecenum=flare1b;
}

Again like in the
"AimFromPrimary()" function, its
passing variables, or object names,
to TA giving it the object names to
use as firing positions for that
particular weapon.

Heres a rotating firing sequence for a triple barrel turret as like the
one on the Arms
Battleship:

QueryPrimary(piecenum)
{
if (next_barrel1==1) {

piecenum=flare1a; }
if (next_barrel1==2) {

piecenum=flare1b; }
if (next_barrel1==3) {

piecenum=flare1c; }
}

Back above in the "static var"
section, the example shows the
"next_barrel1" variable being
incremented and down here its being
compaired to see which flare should
be used. It would look really odd
to have the center barrel firing
all the time while the left and
right barrels show their flares.
Thats why this is done like this.

Thats all this function does.

FirePrimary(piecenum)
FireSecondary(piecenum)
FireTetriary(piecenum)

Yup another name mixup here. What this function does is show animation
for firing. Turrets use this to move their barrels back and to show
flares, like this:

FirePrimary()
{
if (next_barrel1==1)

{
 move barrel1a to z

axis;
 axis [2.4]
speed [500];

 wait
 move barrel1a
along z

 move barrel1a to z
axis [0] speed [3.0];
show flare1a;
sleep 150;
hide flare1a;
}
.....

}

After the "if" comparison is done,
a barrel is moved along the z axis
to a position [2.4] AWAY from the
center of its z axis at the speed
of [500].

Watch the brackets and where they
are used. The bottom of this file
has a list as to their occurrence.
The "wait move" is for a pause that
will wait for the specified object
to actually move to its required
length along a specified axis
before proceeding to the next
statement. The "along" is a good
addition because it allows you to
have multi axial movements (say a
barrel that is raising out of a
ground or whatever).

The next statement is the barrel
returning to the ready position but
moving slowly because of the speed
setting of [3.0]. Also notice that
z-axis is [0] and not [2.4].
That’s because its returning the
object barrel1a to its original
position. If you had said [2.4]
instead of [0], the barrel would
appear 2.4 units away from the
center of its z-axis.

The "show flare1a;" does just that,
it shows the flare1a object, sleeps
for 150 ticks (I think its in ticks
which I think is 1/100th of a
second?), and then hides the
flare1a object again. This gives
it that flash effect.

Activate()
Deactivate()

These are the state requests of a particular unit. The Brawler, Missile
ship, MERL, Construction Yards, etc... use them. What they do is make a
unit useable or un-usable until it goes into the ready status. Like how
you cant fire a Nuke until its done loading it on the pad or why the MERL
wont fire until the rocket is in a position to fire.

An important note here is that the #include "Statechg.h" line needs to be
added twice in the bos file. Once before the #define ACTIVATECMD /
DEACTIVATECMD and once after it. Let me show you an example of the arm's
missile silo bos file:

.... See how "Statechg.h" was added twice

#define ANIM_VARIABLE TRUE
#include "StateChg.h"
#include "activatescr.bos"
#include "deactivatescr.bos"
#include "smokeunit.h"
#include "exptype.h"

 ("Go()" and "Stop()" functions
here)
#define ACTIVATECMD call-script
Go();
#define DEACTIVATECMD call-script
Stop();
#include "StateChg.h"
-

.....
Go()

{
dont cache door1;
dont cache door2;
dont cache missile;
dont cache plate;
dont cache arm;
show missile;
call script activatescr();
ready = TRUE;
}

Stop()

{
ready = FALSE;

 script activatescr();"
sleep 4000;
call script deactivatescr();
cache door1;
cache door2;
cache missile;
cache plate;
cache arm;
}

Here? Remember, once before and once
after the "#define ACTIVATECMD" and
"#define DEACTIVATECMD" definitions.
Also notice after the ACTIVATECMD
there is the segment “call script
Go();". This is the function used to
show the animation of the unit being
readied to shoot. The same with the
DEACTIVATECMD but to deactivate the
unit. Take note of the "#define
ANIM_VARIABLE TRUE" definition here as
well. It will be needed.

Here is where the functions "Go()" and
"Stop()" are at. I am not sure what
the "don’t cache" and "cache" do but
by following this, a rule of thumb can
be made. Use "dont cache" for objects
that will be animated by the function
"activatescr()" and "cache" for
objects animated by the function
"deactivatescr()".

You can see that "Go()" and "Stop()"
are defined at the top by "#define
ACTIVATECMD call script Go();" and
#define DEACTIVATECMD call script
Stop();". What this says is when TA
gets the ACTIVATECMD from the user
(you wanting the unit to do something)
to start running the function "Go()".
And within that "Go()"function is a
"call statement. And below that the
variable "ready" which can be used for
comparison in another function.

 // Activate.bos file //

activatescr()

{
 If (ANIM_VARIABLE)

 {
 move plate to y axis <0.00> now
 move arm to x axis <0.00> now
 move arm to z axis <0.00> now
 turn door1 around z axis <0>

now
 turn door1 to z axis [89.55]

speed <47.13>
 turn door2 around z axis <0>

now
 turn door2 to z axis [90.00]

speed <47.37>
 sleep <1900>
 }
 If (ANIM_VARIABLE)
 {
 move door1 to y axis [6.10]

speed <3.13>
 move door2 to y axis [6.10]

speed <3.13>
 sleep <1950>
 }
 If (ANIM_VARIABLE)
 {
 move plate to y axis [8.00]

speed <4.06>
 sleep <1970>
 }
 If (ANIM_VARIABLE)
 {
 turn arm to x axis [90.00]

speed <45.54>
 sleep <1976>

 }
 sleep <114>
 return (0)
}

Here is the "activatescr()"
function from the arm's
missile silo. Being called by
the "Go()" function, and
included by #include
"activatescr.bos" definition,
here is where the pieces are
maneuvered into place that
will allow the unit to fire.

You can see the "if"
comparisons to see if
ANIM_VARIABLE exists, which it
does, so these conditions will
always be true. Delays by the
statements "sleep<1900>" pause
the sequences here.

To me it looks like a better
way of scripting this could
have been done by using the
"wait on move" command and
removing the "if" comparisons,
but I guess it has to be
written like this.

At the very bottom is the
"return (0)" statement

which is just returning to the
"Go()" function saying its
done with this and can
continue on with the rest of
its statements.

The "Deactivate()" function is
just the opposite of this
"Activate()"function because
it just replaces all pieces
back into their original
position.

Now all these functions are just setting up how the unit is to be
activated. The actual call is from here:

 // Armsilo.bos //

AimPrimary(heading,pitch)

{
start script

RequestState(ACTIVE);

signal SIG_AIM;
set signal

mask SIG_AIM;
while (!ready)

{
sleep(250);
}

start script
RestoreAfterDelay();

return(TRUE);
}

 // Segment from file
statechg.h //
.....
-
if (statechg_DesiredState ==
ACTIVE)

{
ACTIVATECMD
actualstate = ACTIVE;
 }

So why is the statement "start
script RequestState(ACTIVE);" the
one that does it? Because in the
"statechg.h" file it has an "if"
comparison checking to see which
state was requested. Since
"ACTIVE" was passed from
the"RequestState(ACTIVE);"
statement, the "if" comparison is
true and the statement within the
brackets are executed.
"ACTIVATECMD" is called and since
"ACTIVATECMD" was defined to call
script "Go()", we go through that
function now. Walking through the
"Go()" function we move to another
"call script" but this one goes to
the "activatescr()" function where
it starts moving parts. After
that’s done it returns to "Go()"and
then back to
AimPrimary(heading,pitch)" where it
then sets up the signal and goes on
from there.

I know this was a big one but I had
to over a very in depth example for
using this function and how. If
you are lost then load up the
"armsilo.bos", "activate.bos", and
the "statechg.h" files so you can
walk through it
with this text. If you want to make
units that follow this, you need to
get this.

StartBuilding()
StopBuilding()

This function just animates the construction unit or plant, depending on
what it is, and can be used to call the ACTIVATECMD or state of the unit.
A particular format is followed by the unit type as listed below:

StartBuilding()
{
spin pad around y axis speed

<30>;

}

StopBuilding()

{
stop

spin pad around y axis;
}

For plants that have a pad that
spins around, they use this.
Shipyards don’t have a pad that
spins so they don’t use this at
all.

StartBuilding()
{
set INBUILDSTANCE to TRUE;
}

StopBuilding()

{
set INBUILDSTANCE to FALSE;
}

Construction aircraft use this one.
TA has INBUILDSTANCE already
defined and all this is doing is
setting that variable as true or
false.

StartBuilding(heading)
{
buildheading = heading;
start script

RequestState(ACTIVE);
}

StopBuilding()

{
start script

RequestState(INACTIVE);
}

C bots, C ships and C vehicles use
this format. Their states are
requested so that the animation of
their nanolathing pieces can be
opened and the variable "heading"
is used in another function called
TargetHeading(heading)" so that the
nanolathing piece can be properly
aimed.

StartBuilding(heading,pitch)
{
bAiming = TRUE;
while (NOT bCanAim)

{
sleep 100;
}

turn torso to y axis heading speed
<300>;
 wait

turn luparm to x axis (0 pitch<30>)
speed <45>;

wait for
turn torso around y axis;
for
turn luparm around x axis;

set INBUILDSTANCE to TRUE;
}

StopBuilding()

{
set INBUILDSTANCE to FALSE;
signal SIG_AIM;
set signal mask SIG_AIM

;
call script RestorePosition();
}

This is the layout for what
the commander uses for its
building process. Its using
"bAiming" for comparison in
other functions as well as
the INBUILDSTANCE variable.
The
commander also uses signals
because it also has regular
weapons to fire with.

You would use this format if
your unit had weapons and a
building capacity.

--

TargetHeading(heading)

This is the second part for the "StartBuilding()" function that the mobile
construction units (k-bots, ships, and vehicles) use. I believe this is
what the nanolathing pieces use for their aiming.

TargetHeading(heading)
{
buildheading = 0

heading;
}

QueryNanoPiece(piecenum)

This is exactly like the "QueryPrimary()" function call. It tells TA
which object piece to use for the nanolathing spray.

QueryNanoPiece(piecenum)

{
piecenum=beam;
}

This is just a simple designation
for a unit that has one nanolathing
piece named "beam".

QueryNanoPiece(piecenum)
{
if(spray == 0)

{
piecenum=beam1;
}

if(spray != 0)
{
piecenum=beam2;
}

spray = !spray;
}

Here is a way to get 2 nanolathing
pieces to fire at the same time.
The example script is from the arms
advanced vehicle plant. Apparently
this is a way to pass 2 pieces
through the "piecenum" variable by
using this series of "if"
comparisons. If your building unit
has 2 nanolathing pieces, this may
be the way to go.

QueryBuildInfo(piecenum)

This function defines what object piece is used to attach the unit thats
being built too. Only construction plants as well as the ship yards use
this. Mobile construction units dont use this. The format is:

QueryBuildInfo(piecenum)
{
piecenum=pad;
}

Just defining what piece is used to
locate the unit thats being

built. I believe it attaches
the unit to this piece so when the
pad is spinning, the unit will spin
with it.

QueryTransport(piecenum)

Not sure exactly what this does but by a guess it might be the object that
is used to carry the unit. Below is the fragment from the arm atlas bos
file. I believe that the statement "piecenum=1;" refrences the first
object in the list for the transport, the one named "base".

QueryTransport(piecenum)
{

 piecenum=1;
}

BeginTransport(height)

This item sets the attachment point for the unit to be picked up by moving
the object named "link" to the unit that will be picked up. The part (0-
height) takes the height of the transport and turns it into a negative
number and that is where "link" gets moved too. The
"RequestState(ACTIVE);" handles the animation of the unit lowering because
as like before in the "Activate()" function description above, it will
refrence its own "Activatescr()" function which will have its own
statements for lowering the unit to carry it and then raising it again to
its original height.

BeginTransport(height)
 {
 move link to y axis (0
height) now;

start script
RequestState(ACTIVE);

}

EndTransport()

This is the ending part for the "BeginTransport(height)" function. It
also contains the "RequestState(INACTIVE);" call and does the opposite of
the above function.

EndTransport()
{
start

script RequestState(INACTIVE);
}

SweetSpot(piecenum)

I believe this is the object that is used to reference where the user
needs to click in order to select it. It might also refer to where the
opposing units aim for while targeting.

SweetSpot(piecenum)
{
piecenum=base;
}

Demo()

Part of CD's unit viewer call. Not all units have this but I think it
allows a unit to be viewed in the unit viewer. The format for this is:

Demo()
{
unitviewer = TRUE;
}

Also in other parts in different
bos files, I have found that within
the "Activate()" functions, the
statement "unitviewer = FALSE;" was
included so its possible to just
add that statement to the
"Activate()" functions of all bos
files.

Killed(severity, corpsetype)

This is how the unit is destroyed and what to do in a certain condition.
Mainly the condition is how much damage the unit takes. Here is the arm
aircraft plants "Killed()" function.

Killed(severity, corpsetype)
{
if (severity <= 25)
{

corpsetype = 1;
explode base type BITMAPONLY | BITMAP1;
explode beam1 type BITMAPONLY | BITMAP2;
explode beam2 type BITMAPONLY | BITMAP3;
explode door1 type BITMAPONLY | BITMAP4;
explode door2 type BITMAPONLY | BITMAP5;
explode light type BITMAPONLY | BITMAP1;
explode nano1 type BITMAPONLY | BITMAP2;
explode nano2 type BITMAPONLY | BITMAP3;
explode pad type BITMAPONLY | BITMAP4;
explode plate1 type BITMAPONLY | BITMAP5;
explode plate2 type BITMAPONLY | BITMAP1;
explode post1 type BITMAPONLY | BITMAP2;
explode post2 type BITMAPONLY | BITMAP3;
explode radar type BITMAPONLY | BITMAP4;
return(0);
}

if (severity <= 50)
{

 corpsetype = 2;
explode base type BITMAPONLY | BITMAP1;
explode beam1 type FALL | BITMAP2;
explode beam2 type FALL | BITMAP3;
explode door1 type BITMAPONLY | BITMAP4;
explode door2 type BITMAPONLY | BITMAP5;
explode light type FALL | BITMAP1;

explode nano1 type SHATTER | BITMAP2;
explode nano2 type BITMAPONLY | BITMAP3;
explode pad type BITMAPONLY | BITMAP4;
explode plate1 type BITMAPONLY | BITMAP5;
explode plate2 type BITMAPONLY | BITMAP1;
explode post1 type FALL | BITMAP2;
explode post2 type FALL | BITMAP3;
explode radar type FALL | BITMAP4;
return(0);
}

if (severity <= 99)
{
corpsetype = 3;
explode base type BITMAPONLY | BITMAP1;
explode beam1 type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP2;
explode beam2 type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP3;
explode door1 type BITMAPONLY | BITMAP4;
explode door2 type BITMAPONLY | BITMAP5;
explode light type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP1;
explode nano1 type SHATTER | BITMAP2;
explode nano2 type BITMAPONLY | BITMAP3;
explode pad type BITMAPONLY | BITMAP4;
explode plate1 type BITMAPONLY | BITMAP5;
explode plate2 type BITMAPONLY | BITMAP1;
explode post1 type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP2;
explode post2 type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP3;
explode radar type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP4;
return(0);
}

}

GUI File Format

by Dark Rain

This is a description of the GUI file format used by TA to store
menus layout information. It’s used in build menus, dialogs etc.

All the stuff in this file was found by trial and error and some
deduction, hours of fun ^_^.

--

Generic Infos about gui files :
--
Each gui files represent an interface on the screen, it can be
full screen or just a small part of it. We'll call a gui file as
as whole an Interface.

Each interface is divided into sub components called Gadgets,
these components can be anything from a button to a scroll bar.

Here's an example of a simple gui file :

[GADGET0]
{
[COMMON]

{
id=0;
assoc=205;
name=Mainmenu.GUI;
xpos=0;
ypos=0;
width=640;
height=480;
attribs=52685;
colorf=52685;
colorb=52685;
texturenumber=0;
fontnumber=-51;
active=1;
commonattribs=-51;
help=;
}

totalgadgets=6;
[VERSION]

{
major=-51;
minor=-51;
revision=-51;
}

panel=;
crdefault=;
escdefault=;
defaultfocus=SINGLE;
}

[GADGET1]
{
[COMMON]

{
id=1;
assoc=126;
name=SINGLE;
xpos=139;
ypos=393;
width=96;
height=20;
attribs=2;
colorf=0;
colorb=0;
texturenumber=0;
fontnumber=0;
active=1;
commonattribs=54;

help=;
}

status=0;
text=SINGLE;
quickkey=83;
grayedout=0;
stages=0;
}

Each gadget is between the

[GADGET0]
{
[COMMON]

{
Gadget infos go here
}

}

You have to note that only the [] are necessary. We have to
suppose that GAGDET1, GAGDET2 etc are for the benefice of Cavedog
Menu Editor, so the following is valid :

[]
{
[COMMON]

{
Gadget infos go here
}

}

Each Gadget is divided in 2 parts, the common attributes and the
gadget specific attributes.

COMMON : The common attributes are attributes
that are well.. common to each gadgets ^_^. This mean that each
gadget has all these attributes BUT it doesn't mean that all are
effective. Some just dont apply to a type of gadget, like a button
doesnt react to any change in size and witdth etc.

SPECIFIC : These are attributes that are needed for some type
of gadgets, for example, some gadgets need a Text description or
they need to be grayed out or not etc.

Another important thing, is the first gadget. This gadget
represent the interface itself. It defines the interface position
on the screen, it'S size, position, background graphic etc. All
the following gadgets are for element of the interface in question.

--

--

COMMON Tag descriptions :
--

id :
--
The ID, is the most important attribute of a gadget, it defines
what the gadget is. Is it a button, text field, scrollbar etc?
This ID decides it.

Here are the various values the ID tag can take and their effects :

0 -> The ID 0 is always used in cavedog gui files to represent the
 first gadget that defines the interface. However, this is like
 Gadget#, it'S optional and probably only for their interface tool.
 In truth, you can give to the ID of the first Gadget in the file
 any value. Personaly, I would leave it to 0, it could have
 unpredictable results.

1 -> It makes the gadget a button

2 -> Creates a listbox.

3 -> Creates a textfield, it's doesnt have any borders, so you have
 to create them yourself in the background image of the form for
 example.

4 -> Creates a Vertical/horizontal Scroll bar.

5 -> It seems to makes the gadget the equivalent of a label for those
 familiar with VB. It allows you to place only text where you want
 to.

6 -> This creates a blank surface that will receive a picture at run time.
 It's used to display a small picture of the map when you're selecting
 a map, or to show a screenshot of your saved game.

7-> It is used to set the default font for labels

12 -> Used to display a picture box, really handy.

Most of these gadget types need other optional fields or have
extra possibilites, we'll discuss it later in this text.
--

--

Name :
--
The name is used for two things, the first one is the graphic
used for the gadget and as a target for "events" that are hard coded.

GRAPHIC :

The name you choose for it, is used to look directly in a gaf
file that has the same name as your menu file. For example,
MAINMENU.GUI has a corresponding file named MAINMENU.GAF. As you may
or may not know, Gaf file are made of several image sequences that
are packed inside of it and each sequence has a name. It will try to
match that name with one inside the gaf file. Failling to do that,

it will resort to using the default graphics for it's ID and for it's
size. This is why the buttons in MAINMENU.gui, which represent the
main menu that appear when you open TA, use a button graphic
even thought there's no corresponding sequence in the gaf file.

You have to understand that a menu, any menu, be it a unit menu or
the battle room menu, has access only to the graphic sequence stored
in the gaf file with it's name and the sequences in commongui.gaf.
This is because all the sequences in commongui.gaf are treated like
global variable.

For changing those graphic individualy you can either change the
default graphic in commongui.gaf but this will change the
button for ALL the buttons using the default graphics. This is a
bit clunky. The right way to do this, would be to create a sequence
inside MAINMENU.gaf called INTRO (for the Intro gadget). Create it
with two frame for pressed and unpressed and voila.

This open a lot of doors, this would allow TC to assign a different
graphic to each button, sure as hell makes for more variety than
the same damn default button everywhere ^_^.

Note : I thought of adding all the units Build Pictures to
 commongui.gaf. It would save a LOT of space for
 gui based menus and MDF would be able to be done
 with little or no additional space compared to
 normal factories. Sadly, adding anything to commongui.gaf
 crash TA on startup. I urge ppl to try to find a solution
 if you're interested but personaly I'm flat out of ideas.

EVENT :

For a button to actualy do something, it has to be linked to an
event that's often hard coded. In MAINMENU.gui, you can see several
button gadgets, one named INTRO, Credits, MULTI, SINGLE and EXIT.
These 5 words are hard coded variable names for this menu. You cannot
had one from another menu, as far as I can tell. So you cant really
had functionalities to a TA menu, just substract some by not using them.

There's a lot of hard coded events, pretty much a completly different
new set for each menus. The only way to know them, is to look at
Cavedog original gui files and deduce them from the buttons in it.

Something interesting to note, is that while you cannot add events,
you can take out some. A use for this, is in a TC, to remove the
Cavedog Logo that looks kind of ugly.

A button with a name that isnt linked to an event will be pressable
but it wont have any impact on the game.

UNIVERSAL EVENT NAME :
As far as I can tell, HELPTEXT, works in every gui. It's used as
a label name, to make it display infos about a gadget your cursor
is on. It seems that the info is hard coded sadly, so you cant
add new ones. I'm really not sure about this so if anyone else
finds out gimme a call ^_^.
--

--

width/height
--
This one is pretty obvious, it just specify the with and height
of a gadget. However, it's useless for most types of gadgets, since
buttons, labels and picture boxes aren't affected by it.
--

--

xpos/ypos : Read, not so obvious detail inside.
--
These two tags represent the x, y coordinates of the gadget.
Pretty easy, but there's a detail to know. For the first gadget,
the x, y coordinates will be respected ONLY if it still allow the
interface to fit completly in the screen. This is why in
MAINMENU.gui, you need to reduce the interface width and height
to something smaller than 640x480 before you move it around.
--

--

active :
--
If 1, then the gadget will be visible, if 0 then it's invisible.
--

--

fontnumber :
--
I found ONE use for this but I'm sure I'm missing something.
When you set a custom font, it sets all the labels to this font.
Well if you set fontnumber to something differant than 0, then
it will use the default TA font again.
--

--

attribs :
--
There's only one use for it, that I've stumbled upon. For
scrollbars, the value for vertical one has to be 2 and 1 for
horizontal scrollbars.
--

--

assoc :
--
I did a lot of searching to find this one and I'm sure I'm only
scratching the surface.

What it does is very simple, it assocy gadgets together (duh). For 90%
of the gadgets I've seen so far, the value of assoc doesnt change
anything. It gets activated only when it's used with gadgets that are

what we'll call "assoc aware". So far, I found only 2 such gadget that
can communicate with each others, it's the scrollbar and the listbox.

When associated together, the listbox will tell the scrollbar how many
item it has, what length the knob should have etc. The scrollbar on
ther other hand, will tell the listbox when to scroll up or down the
list as the user moves it around.

useless side effect :
When 2 scrollbar have the same assoc number, using the arrows
to make the knob move will result in making the knob on the
other scrollbar move.

I'm sure there's more to it, but I cant seem to figure it out.
--

As far as I can tell, the following tags do nothing :

colorf/colorb,
texturenumber,
commonattribs.

--

UNCOMMON Tag descriptions :
--
I'll describe these tags with the gadget they're used with, it'll
simplify things greatly, since many have to be used in conjunction
with each others.

Many of these tags have default value of 0 or
an empty text but in game, the value isnt 0 or the text is
different. This is because for gadgets having Event name for
the current interface, TA do some special checks or in this case
it modify some variables value.

One last thing, some gadget are invisble in game but you KNOW
they're there and they should be visible. Things like buttons or
labels. This is because TA checks for gadgets with some
specific Event name and make them invisible under some circumstances.

--

Headers (ID 0) :
--
The header is the first gadget in an interface that I spoke of
earlier. The special tags are :

totalgadgets -> This is used to indicate the total number of
 gadgets in the interface but it's a bogus tag.
 It doesnt have any effect on the interface, that
 I can see.

panel -> This is used to set the background picture of the interface.
 If the interface already use a pcx based background, then

 leave it blank : panel=;

 Setting the gaf works a bit like the name tag, it refers to the
name
 of a sequence in a gaf file with the same name as the gui menu
 or a sequence in the commongui.gaf.

crdefault -> I have no idea yet.

escdefault -> This indicate the name of the button that will be
 pressed when Escape is pressed.

defaultfocus -> This contain the name of the button that will be
 have the focus on by default when the interface
 open. (The focus is represented by the glowing rectangle)

Version -> This bit has to be added, after the common section.
 Put whatever value you want to, for the major, minor
 and revision. It doesnt matter.

[VERSION]
{
major=-51;
minor=-51;
revision=-51;
}

EXAMPLES :

[GADGET0]
{
[COMMON]

{
id=0;
assoc=205;
name=Mainmenu.GUI;
xpos=0;
ypos=0;
width=640;
height=480;
attribs=52685;
colorf=52685;
colorb=52685;
texturenumber=0;
fontnumber=-51;
active=1;
commonattribs=-51;
help=;
}

totalgadgets=6;
[VERSION]

{
major=100;
minor=-51;
revision=-51;
}

panel=;
crdefault=MULTI;
escdefault=IGPATCH;
defaultfocus=SINGLE;
}

--

--

Buttons (ID 1) :
--
The special tags for a button are :

status -> For simple buttons, this dictate which frame of the
 sequence in the gaf file the button will start on.
 If you go past the max number of frames in the sequence,
 the button will be invisible.

 For multiple stages buttons, the status has to be 0 or
 you'll get the wrong frame.

stages -> This is used to indicate the number of stages a button
 posses. For example, a On/Off button would have 2 stages.

text -> This is just the text of the button, type whatever you
 want to. For simple buttons, you just type your text,
 however, for multiple stages button, you have to
 use pipes to separate the text of each stages of the button.
 It works as follow (3 stages) : text=Continues|Ends|Deathmatch;

quickkey -> This is a shortcut key that you can set for the gadget.
 The key is an ascii number. Consult your nearest
 ASCII character table for more infos ^_^.

grayedout -> Tells if the button is grayed out not. It makes the
 button disabled but visible, unlike setting active
 to 0.

EXAMPLES :
Normal button ->

[GADGET4]
{
[COMMON]

{
id=1;
assoc=126;
name=INTRO;
xpos=409;
ypos=393;
width=96;
height=20;
attribs=2;
colorf=0;
colorb=0;
texturenumber=0;

fontnumber=0;
active=1;
commonattribs=54;
help=;
}

status=0;
text=INTRO;
quickkey=73;
grayedout=0;
stages=0;
}

Multi Stage Button (2 stages) ->

[GADGET6]
{
[COMMON]

{
id=1;
assoc=0;
name=ARMPREV;
xpos=100;
ypos=283;
width=300;
height=40;
attribs=32;
colorf=240;
colorb=0;
texturenumber=0;
fontnumber=0;
active=1;
commonattribs=0;
help=;
}

status=0;
text=On|Off;
quickkey=O;
stages=2;

Note that the text is aligned in the middle for simple buttons
and it's aligned to the right for multiple stages buttons.
--

--

Listbox (ID 2) :
--
Well sadly, there's no special tags for it, so I'll just
give an example :

[GADGET1]
{
[COMMON]

{

id=2;
assoc=1;
name=GAMES;
xpos=10;
ypos=10;
width=242;
height=176;
attribs=1;
colorf=15;
colorb=0;
texturenumber=0;
fontnumber=0;
active=1;
commonattribs=54;
help=;
}

}
--

--

Textbox (ID 3) :
--
Pretty simple gadget, just indicate it's size and position.

maxchars -> The maximum number of character in the textbox.

EXAMPLE :

[GADGET9]
{
[COMMON]

{
id=3;
assoc=0;
name=ADDRESS;
xpos=53;
ypos=61;
width=250;
height=26;
attribs=0;
colorf=100;
colorb=0;
texturenumber=0;
fontnumber=0;
active=1;
commonattribs=-125;
help=;
}

maxchars=30;
}

--

--

Scrollbar (ID 4) :
--
Wether it's a vertical or horizontal scrollbar is decided by
the width and height. One with say a width of 16 and a height of 184
will be a vertical scrollbar, where one with a width of 184 and a
height of 16 will be an horizontal scrollbar.

With the height and witdth, you'll get the graphic for the orientation
you want but to make it fully operational, you need the right
attribs value : 1 for horizontal and 2 for vertical.

range -> This is the number of item the scroll bar contains. This isnt
 important, because it seems TA will always change it for
 scrollbar that have Event name and have an associate,
 beside, the result inst visible.

thick -> ? Doesnt seem to affect anything.

knobpos -> I assume it's a position within the range of the number
 in the "range" tag. Sadly, you cant pre set it, it doesnt
 do anything.

knobsize -> This, is obviously the size of the know on the scrollbar.
 This too is usualy changed by TA when the srollbar has an
 associate.

EXAMPLES :
Vertical ->

[GADGET1]
{
[COMMON]

{
id=4;
assoc=243;
name=KNOB;
xpos=17;
ypos=30;
width=13;
height=150;
attribs=2;
colorf=4;
colorb=0;
texturenumber=0;
fontnumber=0;
active=1;
commonattribs=0;
}

range=151;
thick=50;
knobpos=0;
knobsize=10;
}

Horizontal ->

[GADGET4]
{
[COMMON]

{
id=4;
assoc=243;
name=SLIDER;
xpos=317;
ypos=63;
width=150;
height=13;
attribs=1;
colorf=4;
colorb=0;
texturenumber=107;
fontnumber=0;
active=1;
commonattribs=10;
}

range=151;
thick=100;
knobpos=0;
knobsize=10;
}

--

--

Labels (ID 5) :
--
Labels are used to display text, you can place them anywhere
inside the interface and make them say whatever you want to.

text -> This is the text that the label will display on the screen.
 Like scrollbar, if the label name is an even name, then
 the text you picked might get changed by TA at run time.

link -> This is used to link a label to a button. What will happen
 is that when you click on the label instead of the button,
 it'll act just as if you clicked on the button. To make it
 work, just give the name of the target button as the link value.

EXAMPLE :

[GADGET3]
{
[COMMON]

{
id=5;
assoc=243;
name=TEXT;
xpos=476;
ypos=132;
width=117;
height=13;
attribs=17;
colorf=0;

colorb=0;
texturenumber=0;
fontnumber=0;
active=1;
commonattribs=0;
help=;
}

text=Location;
link=StartLocation;
}

--

--

Blank Surfaces (ID 6) :
--
As I mentioned earlier, blank surfaces, are dynamic picture box.
They're used in TA mainly to display the Mini map, as a preview
when you're selecting a map, to show the screenshot of the minimap
of your saved games etc. Just make sure it has the right event name
so that TA can fill it with a nice picture.. Ooooooooooh a map.
(I'm tired I think ^_^;)

hotornot -> This is used to enable the selection rectangle visible
 on button and such to be visible on the Blank Surface.
 If hotornot = 1 then it's visible, if it's equal to 0
 then the focus rectangle is invisible.

EXAMPLE :

[GADGET2]
{
[COMMON]

{
id=6;
assoc=0;
name=MAPPIC;
xpos=328;
ypos=78;
width=252;
height=252;
attribs=0;
colorf=15;
colorb=0;
texturenumber=0;
fontnumber=0;
active=1;
commonattribs=0;
help=;
}

hotornot=0;
}

--

--

Fonts (ID 7) :
--
This sets the default font for labels for the whole interface.
Sadly, I havent been able to change the font color or size yet,
so you're stuck with black colored fonts.

filename -> This is the name of the font you want to use, check the
 fonts directory to know the names of the font. It's very
 important that you only use the name of the font in
 filename and not include the extansion. So, for example,
 the files SMLFONT.FNT becomes filename=SMLFONT; .

EXAMPLE :

[GADGET1]
{
[COMMON]

{
id=7;
assoc=243;
name=FONT2;
xpos=600;
ypos=321;
width=26;
height=66;
attribs=13;
colorf=15;
colorb=0;
texturenumber=100;
fontnumber=9;
active=1;
commonattribs=-125;
help=;
}

filename=SMLFONT;
}

--

--

Picture Box (ID 12) :
--
This allow you to display a picture of a gaf sequence. As usual,
the name correspond to the sequence in the gaf file that you
want the picture to display.

[GADGET13]
{
[COMMON]

{
id=12;
assoc=0;
name=IGPATCH;
xpos=0;

ypos=0;
width=300;
height=40;
attribs=2;
colorf=15;
colorb=0;
texturenumber=0;
fontnumber=0;
active=1;
commonattribs=86;
help=;
}

}
--

Well that's it for now. I'll probably update when I find what the
3 mystery tags do ^_^. For more infos or questions email
me at rochdenis@hotmails.com

GAF Format

This is a description of the GAF file format used by TA to store all kinds
of graphic elements, including animations, static pictures, user interface
elements, etc.

Credits:
This document builds on the original by Saruman and Bobban.

In addition, I got much helpful info from Bizmut, Kinboat, and Manu.

I even figured a couple of things out myself, but the people listed above
did most of it.

Warning: This is intended for use by people that already know what they're
doing.

I'm a C programmer, so I'm doing things in C notation here, but I'll try to
explain it so that those of you that don't speak C will be able to
understand. If you don't understand, write me at joed@cws.org and I'll try
to clear things up.

I'm also a big believer in examples, so I'll be walking you through a GAF
file (Archipelago.GAF) as I explain.

The first part of the file is the header, which looks like this:

typedef struct _GAFHEADER {
 long IDVersion; /* Version stamp - always 0x00010100 */
 long Entries; /* Number of items contained in this file */
 long Unknown1; /* Always 0 */
} GAFHEADER;

Let's look at a sample header:
00000000 00 01 01 00 39 00 00 00 00 00 00 00

IDVersion is 0x00010100 like we expect. Entries is 0x39, indicating that
there are 57 items contained in this file.

Immediately following the header is a list of pointers, one for each entry.

The list of pointers here looks like:
00000000 68 EA 04 00
00000010 98 EA 04 00 C8 EA 04 00 F8 EA 04 00 78 EB 04 00
00000020 A0 EB 04 00 C0 ED 04 00 40 EE 04 00 68 EE 04 00
00000030 98 EE 04 00 C8 EE 04 00 F8 EE 04 00 78 EF 04 00
00000040 A8 EF 04 00 C8 F1 04 00 48 F2 04 00 78 F2 04 00
00000050 A8 F2 04 00 D8 F2 04 00 08 F3 04 00 88 F3 04 00
00000060 A8 F5 04 00 28 F6 04 00 58 F6 04 00 88 F6 04 00
00000070 B8 F6 04 00 E8 F6 04 00 18 F7 04 00 B8 F7 04 00
00000080 E8 F7 04 00 20 FB 04 00 C0 FB 04 00 F0 FB 04 00
00000090 20 FC 04 00 50 FC 04 00 80 FC 04 00 20 FD 04 00
000000A0 68 00 05 00 08 01 05 00 38 01 05 00 68 01 05 00
000000B0 98 01 05 00 C8 01 05 00 68 02 05 00 98 02 05 00
000000C0 F0 05 05 00 90 06 05 00 C0 06 05 00 F0 06 05 00
000000D0 68 07 05 00 28 08 05 00 58 08 05 00 88 08 05 00
000000E0 B8 08 05 00 E8 08 05 00 18 09 05 00 48 09 05 00

The next byte after the pointer list is at offset F0. Remember this.

Each pointer points to a structure that looks like this:

typedef struct _GAFENTRY {
 short Frames; /* Number of frames in this entry */
 short Unknown1; /* Unknown - always 1 */
 long Unknown2; /* Unknown - always 0 */
 char Name[32]; /* Name of the entry */
} GAFENTRY;

The first pointer is directs us to location 0x04EA68. Going
there, we find:

0004EA60 01 00 01 00 00 00 00 00 t...............
0004EA70 46 72 6F 6E 64 30 31 00 00 00 00 00 00 00 00 00 Frond01.........
0004EA80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This entry has 1 frame, and is called 'Frond01'.

Following each entry is another list of structures, one for each frame.

typedef struct _GAFFRAMEENTRY {
 long PtrFrameTable; /* Pointer to frame data */
 long Unknown1; /* Unknown - varies */
} GAFFRAMEENTRY;

The frame entry looks like this:

0004EA90 78 D5 03 00 02 00 00 00

PtrFrameTable is 0x03D578. This points us to a structure containing data
about the first frame in this entry. It looks like this:

typedef struct _GAFFRAMEDATA {
 short Width; /* Width of the frame */
 short Height; /* Height of the frame */
 short XPos; /* X offset */

 short YPos; /* Y offset */
 char Unknown1; /* Unknown - always 9 */
 char Compressed; /* Compression flag */
 short FramePointers; /* Count of subframes */
 long Unknown2; /* Unknown - always 0 */
 long PtrFrameData; /* Pointer to pixels or subframes */
 long Unknown3; /* Unknown - value varies */
} GAFFRAMEDATA;

Here's the data:

0003D570 31 00 1F 00 15 00 0F 00
0003D580 09 01 00 00 00 00 00 00 F0 00 00 00 00 00 00 00

Width and height are (duh) the width and height of the frame. This frame
is
0x31 by 0x1F pixels (49 x 31).

XPos and YPos are actually offsets that give the displacement of the frame
from the entry's actual position on the map. So if the entry itself was
placed at position 100,100, the frame would be at position
100-XPos,100-YPos. These offset can be negative. Here, they place the
frame
at 21 pixels left, and 15 pixels above the initial placement of the item on
the map.

Unknown1 is always 9. No idea what it really means.

Compressed is the compression flag. If it's 0, the image is not
compressed.
This image is compressed. More on this in a bit.

FramePointers. This is where it gets a little weird. If FramePointers is
0, then PtrFrameData points to pixel data. If it isn't, then PtrFrameData
points to a list of that many more pointers to GAFFRAMEDATA structures.
Each of these subframes is collectively treated as one frame. More in this
in a bit.

Unknown2 is always 0.

PtrFrameData points to the pixel data or to more GAFFRAMEDATA structures,
depending on the value of FramePointers. Here it's pointing to offset
0xF0.
If you remember, this is the first byte after the list of entry pointers
way
back at the start of the file.

Unknown3 is a mystery. Sometimes the value is 0. Sometimes it isn't. No
idea what it means or how to calculate it.

Ok. Now we have this frame entry. Since FramePointers is 0, PtrFrameData
points to pixel data. If the frame were not compressed, it'd just be the
raw pixels, 31 chunks of 49 bytes each, corresponding to each line. This
frame is compressed, so things are a little different.

Let's look at the data:

000000F0 07 00 29 00 44 17 00 45 21 0E 00 1B 00 44 17 04
00000100 44 B3 07 00 45 09 00 44 1B 10 00 1B 00 A3 0D 00

00000110 44 07 00 A2 03 00 A2 0F 00 44 1D 16 00 13 00 45
00000120 07 00 44 03 00 45 13 00 44 03 00 45 09 00 45 03
00000130 00 A3 1D 1F 00 15 00 45 07 04 44 A3 07 00 45 03
00000140 00 44 03 00 44 03 00 A3 03 00 45 03 00 45 03 08
00000150 44 B3 A2 1F 1D 00 09 04 45 44 0B 04 44 45 07 08
00000160 44 A3 44 03 00 A2 03 04 A2 B3 05 00 45 05 08 44
00000170 A3 B3 23 25 00 0D 00 45 03 04 B3 44 05 00 45 07
00000180 08 A3 44 B3 03 04 44 5B 05 06 45 05 00 44 03 04
00000190 A2 45 09 04 44 45 07 00 44 0F 2B 00 0F 00 A2 03
000001A0 00 45 03 00 45 03 00 44 03 00 45 03 04 B4 35 03
000001B0 00 B3 05 08 45 B3 44 03 04 A2 46 03 08 B4 44 A2
000001C0 05 00 44 0D 00 44 0D 2B 00 09 00 45 05 34 45 44
000001D0 A3 45 A2 44 B4 45 45 B3 36 45 45 35 03 0C A2 46
000001E0 A3 45 03 04 45 46 03 00 A2 03 04 B3 45 03 00 45
000001F0 0B 00 44 0F 28 00 0B 04 45 A2 05 38 B2 A3 B4 A2
00000200 A2 B4 45 A2 45 45 A3 46 44 46 44 03 14 A2 46 46
00000210 44 B3 37 03 00 35 03 04 A2 45 05 06 45 13 2B 00
00000220 04 A3 44 03 00 44 07 34 B4 A2 44 45 46 45 46 A2
00000230 A2 46 A2 B4 46 A2 03 04 B3 44 03 24 B2 A2 44 A2
00000240 36 A2 45 B4 A2 46 03 04 46 44 17 2A 00 09 08 44
00000250 A3 44 05 08 A3 45 36 03 60 A2 45 B2 45 45 A2 A2
00000260 B4 44 A3 35 45 A3 44 B4 A2 46 B2 45 A2 A2 B2 46
00000270 44 A3 07 04 A2 45 0D 29 00 0B 10 44 45 45 B3 45
00000280 03 60 46 44 45 46 A2 45 B3 45 B2 35 A3 44 B3 A3
00000290 B4 A1 46 45 45 A2 46 A2 B4 45 45 03 0C 46 44 A2
000002A0 45 11 2F 00 00 44 03 0C 44 A3 45 B3 03 04 45 35
000002B0 03 00 44 03 0C 45 B4 45 B4 03 58 46 A2 45 B3 44
000002C0 A3 44 45 A2 46 44 45 45 46 44 44 45 A2 44 45 B4
000002D0 A2 46 13 28 00 00 A3 05 00 45 07 00 46 03 00 45
000002E0 03 04 45 A3 0E 45 48 A2 46 45 A2 46 B4 A2 45 46
000002F0 B3 46 45 46 46 45 A2 A2 B4 A3 0A 45 15 31 00 0B
00000300 20 A2 45 45 35 B3 44 46 45 45 03 06 45 00 46 03
00000310 5C A2 46 44 A2 45 B3 45 45 46 36 B3 A1 A3 44 B2
00000320 A2 45 B4 A2 A2 B3 45 44 45 03 04 A3 44 05 00 44
00000330 2F 00 07 00 45 03 04 45 A3 03 14 B3 36 A3 B2 45
00000340 45 03 70 45 A3 B3 36 45 46 B3 A2 44 A3 45 A3 44
00000350 46 35 B4 45 B3 35 46 A2 36 45 B4 36 A2 A3 B2 45
00000360 0B 2C 00 09 00 45 07 0C A3 45 45 36 03 06 45 20
00000370 B4 45 A2 5B 46 36 45 B4 45 03 24 46 44 46 B3 A2
00000380 45 45 A3 A1 B4 05 0C 46 A2 B4 5A 07 00 45 09 2A
00000390 00 07 00 45 03 04 44 45 03 3C 45 B3 A2 45 45 38
000003A0 A2 45 44 45 45 46 45 45 A2 45 03 28 37 B4 45 A2
000003B0 46 44 46 45 46 45 45 07 00 45 13 26 00 09 28 A3
000003C0 45 B3 A2 46 45 A2 B2 A3 44 38 03 04 B3 45 03 00
000003D0 45 03 00 45 09 18 45 46 A1 36 B4 A2 46 05 08 B3
000003E0 45 45 17 27 00 0F 00 46 0A 45 08 A3 45 46 03 06
000003F0 5B 00 A3 03 0C 5B 45 45 37 05 04 45 A2 03 04 45
00000400 B4 03 04 45 A2 07 00 45 05 00 45 13 24 00 09 06
00000410 45 14 46 44 A3 44 B3 45 03 00 38 05 00 5A 05 04
00000420 44 A3 07 14 46 45 B2 35 45 A2 05 04 44 45 0D 06
00000430 45 0F 23 00 07 00 45 09 04 B3 37 03 00 45 05 00
00000440 36 03 00 44 03 04 45 B3 05 20 45 44 A2 46 44 A3
00000450 B3 44 45 0B 00 44 19 1B 00 0D 0C 45 A2 5A 37 0B
00000460 04 44 A3 03 04 46 A3 03 08 35 B3 45 07 04 B3 45
00000470 0F 00 A3 19 1C 00 0B 04 44 A2 07 00 46 07 08 44
00000480 46 44 07 06 45 03 00 45 03 00 45 03 00 35 03 00
00000490 A2 27 15 00 09 00 45 11 08 44 45 A3 09 00 44 05
000004A0 00 A2 0B 00 46 0F 00 44 17 0B 00 1B 00 A3 11 04
000004B0 B3 44 0D 00 44 25 08 00 19 04 B3 44 0B 00 44 3B
000004C0 07 00 19 00 36 0D 00 45 3B 07 00 27 00 A2 05 00
000004D0 A2 35 04 00 2B 00 44 37

PtrFrameData points to a short integer that is a count of bytes for the
first line. Skip ahead that many bytes, and you get to a count for the
second line, etc, etc. The first line is 7 bytes long, and consists of 29
00 44 17 00 45 21. The Height parameter tells you how many lines there are,
in this case, 31. Broken into lines, minus the length data, we get:

Line 0 29 00 44 17 00 45 21

Line 1 1B 00 44 17 04 44 B3 07 00 45 09 00 44 1B
Line 2 1B 00 A3 0D 00 44 07 00 A2 03 00 A2 0F 00 44 1D
Line 3 13 00 45 07 00 44 03 00 45 13 00 44 03 00 45 09 00 45 03 00 A3 1D
Line 4 15 00 45 07 04 44 A3 07 00 45 03 00 44 03 00 44 03 00 A3 03 00 45 03 00 45 03 08 44
B3 A2 1F
Line 5 09 04 45 44 0B 04 44 45 07 08 44 A3 44 03 00 A2 03 04 A2 B3 05 00 45 05 08 44 A3 B3
23
Line 6 0D 00 45 03 04 B3 44 05 00 45 07 08 A3 44 B3 03 04 44 5B 05 06 45 05 00 44 03 04 A2
45 09 04 44 45 07 00 44 0F
Line 7 0F 00 A2 03 00 45 03 00 45 03 00 44 03 00 45 03 04 B4 35 03 00 B3 05 08 45 B3 44 03
04 A2 46 03 08 B4 44 A2 05 00 44 0D 00 44 0D
Line 8 09 00 45 05 34 45 44 A3 45 A2 44 B4 45 45 B3 36 45 45 35 03 0C A2 46 A3 45 03 04 45
46 03 00 A2 03 04 B3 45 03 00 45 0B 00 44 0F
Line 9 0B 04 45 A2 05 38 B2 A3 B4 A2 A2 B4 45 A2 45 45 A3 46 44 46 44 03 14 A2 46 46 44 B3
37 03 00 35 03 04 A2 45 05 06 45 13
Line 10 04 A3 44 03 00 44 07 34 B4 A2 44 45 46 45 46 A2 A2 46 A2 B4 46 A2 03 04 B3 44 03 24
B2 A2 44 A2 36 A2 45 B4 A2 46 03 04 46 44 17
Line 11 09 08 44 A3 44 05 08 A3 45 36 03 60 A2 45 B2 45 45 A2 A2 B4 44 A3 35 45 A3 44 B4 A2
46 B2 45 A2 A2 B2 46 44 A3 07 04 A2 45 0D
Line 12 0B 10 44 45 45 B3 45 03 60 46 44 45 46 A2 45 B3 45 B2 35 A3 44 B3 A3 B4 A1 46 45 45
A2 46 A2 B4 45 45 03 0C 46 44 A2 45 11
Line 13 00 44 03 0C 44 A3 45 B3 03 04 45 35 03 00 44 03 0C 45 B4 45 B4 03 58 46 A2 45 B3 44
A3 44 45 A2 46 44 45 45 46 44 44 45 A2 44 45 B4 A2 46 13
Line 14 00 A3 05 00 45 07 00 46 03 00 45 03 04 45 A3 0E 45 48 A2 46 45 A2 46 B4 A2 45 46 B3
46 45 46 46 45 A2 A2 B4 A3 0A 45 15
Line 15 0B 20 A2 45 45 35 B3 44 46 45 45 03 06 45 00 46 03 5C A2 46 44 A2 45 B3 45 45 46 36
B3 A1 A3 44 B2 A2 45 B4 A2 A2 B3 45 44 45 03 04 A3 44 05 00 44
Line 16 07 00 45 03 04 45 A3 03 14 B3 36 A3 B2 45 45 03 70 45 A3 B3 36 45 46 B3 A2 44 A3 45
A3 44 46 35 B4 45 B3 35 46 A2 36 45 B4 36 A2 A3 B2 45 0B
Line 17 09 00 45 07 0C A3 45 45 36 03 06 45 20 B4 45 A2 5B 46 36 45 B4 45 03 24 46 44 46 B3
A2 45 45 A3 A1 B4 05 0C 46 A2 B4 5A 07 00 45 09
Line 18 07 00 45 03 04 44 45 03 3C 45 B3 A2 45 45 38 A2 45 44 45 45 46 45 45 A2 45 03 28 37
B4 45 A2 46 44 46 45 46 45 45 07 00 45 13
Line 19 09 28 A3 45 B3 A2 46 45 A2 B2 A3 44 38 03 04 B3 45 03 00 45 03 00 45 09 18 45 46 A1
36 B4 A2 46 05 08 B3 45 45 17
Line 20 0F 00 46 0A 45 08 A3 45 46 03 06 5B 00 A3 03 0C 5B 45 45 37 05 04 45 A2 03 04 45 B4
03 04 45 A2 07 00 45 05 00 45 13
Line 21 09 06 45 14 46 44 A3 44 B3 45 03 00 38 05 00 5A 05 04 44 A3 07 14 46 45 B2 35 45 A2
05 04 44 45 0D 06 45 0F
Line 22 07 00 45 09 04 B3 37 03 00 45 05 00 36 03 00 44 03 04 45 B3 05 20 45 44 A2 46 44 A3
B3 44 45 0B 00 44 19
Line 23 0D 0C 45 A2 5A 37 0B 04 44 A3 03 04 46 A3 03 08 35 B3 45 07 04 B3 45 0F 00 A3 19
Line 24 0B 04 44 A2 07 00 46 07 08 44 46 44 07 06 45 03 00 45 03 00 45 03 00 35 03 00 A2 27
Line 25 09 00 45 11 08 44 45 A3 09 00 44 05 00 A2 0B 00 46 0F 00 44 17
Line 26 1B 00 A3 11 04 B3 44 0D 00 44 25
Line 27 19 04 B3 44 0B 00 44 3B
Line 28 19 00 36 0D 00 45 3B
Line 29 27 00 A2 05 00 A2 35
Line 30 2B 00 44 37

To decode the line, to the following:

1. Read a byte. This is a mask.
2. If (mask & 0x01) = 0x01
 skip ahead (mask >> 1) pixels. This is transparency, allowing
whatever
 was under the frame to show through.
 else if (mask & 0x02) = 0x02
 copy the next byte (mask >> 2)+1 times to output.
 else
 copy the next (mask & 0x02)+1 bytes to output.
3. go back to 1, until there are no more bytes left in the line.

A C code fragment to do this is:

 char *data; // points to pixel data

for (y = 0; y < FrameData.Height; y++) {
 bytes = *((short *) data);
 data += sizeof(short);
 count = 0;
 x = 0;
 while (count < bytes) {
 mask = (unsigned char) data[count++];
 if ((mask & 0x01) == 0x01) {
 // transparent
 x += (mask >> 1);
 else if ((mask & 0x02) == 0x02) {
 // repeat next byte
 repeat = (mask >> 2) + 1;
 while (repeat--)
 putpixel(x++, y, data[count]);
 count++;
 }
 else {
 repeat = (mask >> 2) + 1;
 while (repeat--)
 putpixel(x++, y, data[count++]);
 }
 }
 data += bytes; // point to next line
}

We do this to the above mess of data, and we get:

Line 0 44
45 *
Line 1 44 44 B3
45 44 *
Line 2 A3 44 A2 A2
44 *
Line 3 45 44 45 44 45
45 A3 *
Line 4 45 44 A3 45 44 44 A3 45
45 44 B3 A2 *
Line 5 45 44 44 45 44 A3 44 A2 A2 B3 45
44 A3 B3 *
Line 6 45 B3 44 45 A3 44 B3 44 5B 45 45
44 A2 45 44 45 44 *
Line 7 A2 45 45 44 45 B4 35 B3 45 B3 44 A2
46 B4 44 A2 44 44 *
Line 8 45 45 44 A3 45 A2 44 B4 45 45 B3 36 45 45 35 A2 46 A3 45 45
46 A2 B3 45 45 44 *
Line 9 45 A2 B2 A3 B4 A2 A2 B4 45 A2 45 45 A3 46 44 46 44 A2 46 46
44 B3 37 35 A2 45 45 45 *
Line 10 A3 44 44 B4 A2 44 45 46 45 46 A2 A2 46 A2 B4 46 A2 B3 44 B2 A2 44
A2 36 A2 45 B4 A2 46 46 44 *
Line 11 44 A3 44 A3 45 36 A2 45 B2 45 45 A2 A2 B4 44 A3 35 45 A3 44 B4
A2 46 B2 45 A2 A2 B2 46 44 A3 A2 45 *
Line 12 44 45 45 B3 45 46 44 45 46 A2 45 B3 45 B2 35 A3 44 B3 A3 B4 A1 46
45 45 A2 46 A2 B4 45 45 46 44 A2 45 *
Line 13 44 44 A3 45 B3 45 35 44 45 B4 45 B4 46 A2 45 B3 44 A3 44 45 A2 46 44
45 45 46 44 44 45 A2 44 45 B4 A2 46 *
Line 14 A3 45 46 45 45 A3 45 45 45 45 A2 46 45 A2 46 B4 A2 45 46 B3 46
45 46 46 45 A2 A2 B4 A3 45 45 45 *
Line 15 A2 45 45 35 B3 44 46 45 45 45 45 46 A2 46 44 A2 45 B3 45 45 46
36 B3 A1 A3 44 B2 A2 45 B4 A2 A2 B3 45 44 45 A3 44 44*
Line 16 45 45 A3 B3 36 A3 B2 45 45 45 A3 B3 36 45 46 B3 A2 44 A3 45 A3 44
46 35 B4 45 B3 35 46 A2 36 45 B4 36 A2 A3 B2 45 *

Line 17 45 A3 45 45 36 45 45 B4 45 A2 5B 46 36 45 B4 45 46 44 46
B3 A2 45 45 A3 A1 B4 46 A2 B4 5A 45 *
Line 18 45 44 45 45 B3 A2 45 45 38 A2 45 44 45 45 46 45 45 A2 45 37 B4 45
A2 46 44 46 45 46 45 45 45 *
Line 19 A3 45 B3 A2 46 45 A2 B2 A3 44 38 B3 45 45 45 45 46
A1 36 B4 A2 46 B3 45 45 *
Line 20 46 45 45 45 A3 45 46 5B 5B A3 5B 45 45 37 45 A2
45 B4 45 A2 45 45 *
Line 21 45 45 46 44 A3 44 B3 45 38 5A 44 A3 46 45 B2 35
45 A2 44 45 45 45 *
Line 22 45 B3 37 45 36 44 45 B3 45 44 A2 46 44 A3
B3 44 45 44 *
Line 23 45 A2 5A 37 44 A3 46 A3 35 B3 45 B3
45 A3 *
Line 24 44 A2 46 44 46 44 45 45 45 45 35
A2 *
Line 25 45 44 45 A3 44 A2
46 44 *
Line 26 A3 B3 44
44 *
Line 27 B3 44 44
*
Line 28 36 45
*
Line 29 A2 A2
*
Line 30 44
*

This is essentially a big green splat, used to represent a patch of
reclaimable foliage.

This entry is very simple. One frame. No subframes. If there were
multiple frames, you'd display each frame in sequence. If the
FramePointers
member were not 0, then instead of pixels, PtrFrameData would point to a
list of pointers that had that many entries. Each pointer would point to
another GAFFRAMEDATA entry. When you are assembling that frame, you would
paint all the subframes in order, and treat the whole thing as one single
frame for animation purposes.

I think I've covered everything. If you have any questions, let me know.

SCT Format

Written by Kinboat, 1998.

** Note **
In order for these sections to work in TAE, their dimensions must be
a multiple of 128.

** File Header (28 bytes) *)
typedef struct _SCTHEADER {
 long Version; // SCT Version. Set to 3.
 long PtrMinimap; // Offset to the section's minimap.
 long NumTiles; // The number of tiles in the section.
 long PtrTiles; // Offset to the section's tiles.
 long Width; // Width of the section.

 long Height; // Height of the section.
 long PtrData; // Offset to the section's data.
} SCTHEADER;

** TileData (PtrTiles) **
Each tile is 32x32 pixels.

BYTE TileData[NumTiles * 1024];

** SectionData (PtrSectionData) **
short SectionData[SectionWidth*SectionHeight];
 This array is an array of index values pointing to tiles stored in
 the TileData.

typedef struct _HEIGHTDATA {
 BYTE Height; // Height value.
 short Constant1; // Always -1.
 BYTE Constant2; // Always 0.
} HEIGHTDATA;

HEIGHTDATA HeightData[SectionWidth * SectionHeight * 4]
 This is an array to the 3D height data for the section. Each tile
 pointed to by SectionData has 4 height values.

** Minimap (PtrMinimap) **
BYTE Minimap[128 * 128];

OTA Format

Initial Mission Commands

The Initial Mission selection is the true heart of mission
creation. Most missions created do not rely on the AI to handle the
battle, rather, everything is carefully planned ahead. Having units wait
until they are attacked, having groups of units attack at the same time,
having them target specific units, even roving patrols, are all commands
that are set here. Giving all (or most) of your enemy units a series of
commands that interact and mesh to make an appropriate defense (and
offense) is what mission creation is all about. If a Unit is given no
initial commands, or runs out of commands, the AI will take over, if it is
a Computer controlled Unit (anything other than Player 1). If it is a
Player controlled Unit and you want the Player to be able to interrupt the
initial commands, insert a "s" (to make it selectable) in the initial
command list.

What follows is a list of the available commands; use a comma to
separate commands. Remember that all unit references should be to the
unit’s name, not the unit’s description (e.g. CORTL not Core Torpedo
Launcher).

m X Y

Tells the Unit to move to coordinates X and Y as measured in
pixels; see "Location" on the Status Bar at the bottom of the program
window.

p X Y

Tells the unit to patrol from the coordinate at which it is
presently to the coordinate that follows the "p" and back again. If only
one coordinate is given the computer will assume the starting point to be
the second point in the command list. If you give two points (p X Y X Y),
the unit will patrol between those two points. If you give three points,
the Unit will patrol between those three points in the order given, etc.
You can specify any number of points in this way. The patrol command
should be at the end of the command list, since once on patrol, it will
ignore all later commands.

a UNITNAME

Tells the Unit to attack the nearest specified Unit. This could be
either a Unit Type (for example "a ARMCOM") or a unique identifier (for
example "a FRED"). If there are no units of the specified Type, the AI
will take control of the unit.

w SECONDS

Tells Unit to wait at its present location for the specified number
of seconds before continuing with the command list. You can specify
fractional seconds (e.g. "w 0.5").

b UNITTYPE X Y

Mobile Construction Units only. Tells the Construction Unit (or
Commander) to build a Unit of the specified Type at location X Y.

b UNITTYPE n

Construction Building. Tells the Construction Building to build n
Units of type UNITTYPE on its construction pad.

d

Destroys the Unit instantly.

s

Makes the Unit selectable even though the initial command list
isn’t completed yet, allowing the AI or player to take control of the Unit.

i UNITNAME

Place this Unit in the specified transport. (e.g. "i ARMSHIP" or if
there is more than one transport give the transport a unique identifier
e.g. "i JAKE").

u XY

You can then tell the transport where to unload the unit that it
carries by designating u XY.

wa

In the initial mission list will wait until the unit is attacked.

"wa otherunit" will wait until otherunit is attacked. This works
like the "i" mission--otherunit identifies a specific unit, not a general
type of unit. In order for this command to work, ‘otherunit’ must be
given a unique name.

Example: Let’s say for a moment, that you’re in the middle of
creating an Arm mission, for which the goal is to get your squad of Zeus
into the enemy’s base and take out their fusion plant. While setting up
the defenses, you might program a fleet of Rapier gunships to wait until
the Arm lightning-chuckers have destroyed a radar tower abandoned in the
middle of a valley, move to co-ordinates 513, 700, followed by a run on
the Arm Commander, nestled in it’s camp. To spring your little trap, you
would need to do the following setup.

-Place radar tower with unique name (e.g. "TRAP")
-Place Rapier units, each with the following initial command

string:

wa TRAP, a ARMZEUS, m 513 700, a ARMCOM

-It’s very important to make sure that you’ve provided the player
with at least one Zeus unit to start with. If there is no Zeus units on
the map, the Rapiers will simply skip that command and go straight after
the Commander. Upon destruction of the radar tower by any other unit than
a Zeus, the Rapiers will still search out the Zeus and try to kill it.

BugFix Information

By Switeck

Unit ID Number Changes:

18 Cavedog units share the same unit id #:

Unit Name Description id# new id#
------ ---------------- ----------- --- -------
ARMCA Construction Aircraft Tech Level 1 18 18
ARMCSA Construction Seaplane Tech Level 1 18 *CONFLICT: ARMCA 400 *
CORCA Construction Aircraft Tech Level 1 90 90
CORCSA Construction Seaplane Tech Level 1 90 *CONFLICT: CORCSA 403 *
ARMDECOM Decoy Commander Decoy Commander 232 232
CORDECOM Decoy Commander Decoy Commander 232 *CONFLICT: ARMDECOM 404 *
ARMPLAT Seaplane Platform Builds Seaplanes 242 242
CORPLAT Seaplane Platform Builds Seaplanes 242 *CONFLICT: ARMPLAT 405 *
ARMMANNI Penetrator Mobile Energy Weapon 269 401 *
CORSUMO Sumo Adv. Armored Assault Kbot 269 *CONFLICT: ARMMANNI 269
CORSS Sea Serpent Indigenous Lifeform 277 406 *
CORSSUB Leviathan Battle Sub 277 *CONFLICT: CORSS 277
CORUWES Underwater Energy Storage Increases Energy Storage 293 293
CORUWMS Underwater Metal Storage Increases Metal Storage 293 *CONFLICT: CORUWES 407 *

ARMUWES Underwater Energy Storage Increases Energy Storage 298 298
ARMUWMS Underwater Metal Storage Increases Metal Storage 298 *CONFLICT: ARMUWES 402 *
ARMEMP Stunner EMP Missile Launcher 322
CORMABM Hedgehog Mobile Missile Defense 322 *CONFLICT: ARMEMP 408 *
CORPLAS Immolator Plasma Tower 124 *CONFLICT: CORPUN 409 *

The * (asterick) means changed.

ALL FIXED -- by moving the conflicting units to different unit id #'s,
starting at 400 and going to 409. This should be safe so long as Cavedog
doesn't create nearly 100 new units. According to Cavedog, this bug has no
effect on gameplay - but since I'm removing other bugs, I'm removing this
bug as well!

Weapon ID Number Changes:

All of the Cavedog weapon id's (in numerical order) are in 1 MASTER
weapons.tdf file in the weapons dir (in REV31.GP3) instead of divided up
among many little files of only a weapon or 2 each. The other files are of
zero-length to force TA to forget all the incorrect and redundant entries
in ccdata.ccx and totala1.hpi.

Although there is only 255 weapon id #'s to work with, Cavedog has quite a
few weapons id #'s that have unused weapons in them. Plus there is quite a
few duplicates among Cavedog's weapons. I don't mean just similar - I mean
identical down to the picture, speed, turn rate, and even acceleration
speed of the weapon. Although it's a lot of work, it's just going through
the unit FBI files and referring them to the same weapon id and going
through weapons id #'s and deleting the unused ones. The problem is,
getting TA both to recognize the changes and ignore the old id's. To do
that, I have to change around a lot of stuff in REV31.GP3 -- it's the only
file that overrides other files containing identical FBI's and weapons
id's. For old weapons id #'s to be ignored, I have made empty files of the
same name and put the whole weapon id #'s list in a single WEAPONS.TDF
file.

With my tests so far, it all seems to work -- even units with 2 identical
weapons such as the Seaplanes and Stealth Fighters seem to work correctly.

Cavedog IDENTICAL and UNUSED weapon id's!

 Weapon Area of Cost Reload
ID Name Range Damage Effect Metal Energy Path Time
--
7 MINDGUN 500 100 16 - - L 1 unused! *
8 SBMISSILE 300 80 16 - - L 1.6 unused! *
19 VTOL_EMG2 (unused!) 510 12 8 - - L .6 burst=3 burst rate=.1 *

22 ARM_DISINTEGRATOR 240 30000 48 - 400 L 1.2
23 CORE_DISINTEGRATOR 240 30000 48 - 400 L 1.2 *

30 AMD_ROCKET 32000 500 96 200 10000 L 120
117 ARMSCAB_WEAPON 27000 500 96 200 10000 L 120 * -- see NOTE #1

32 FMD_ROCKET 32000 500 96 200 10000 L 120
118 CORMABM_WEAPON 22000 500 96 200 10000 L 120 * -- see NOTE #1

38 ARMAMPH_WEAPON2 700 46(97) 48 - - L 2 *
106 ARMRL_MISSILE 700 46(97) 48 - - L 2

43 CORFLAK_GUN 750 146 125 - - B .7 Flak
79 ARMAAS_WEAPON3 750 146 125 - - B .7 Flak *

180 CORARCH_WEAPON3 750 146 125 - - B .7 Flak *

50 ARM_LIGHTCANNON 240 50 32 - - B 1.53
51 CORE_LIGHTCANNON 240 50 32 - - B 1.53 *

55 CORE_THUD 230 80 48 - - B 1.9
159 CORAMPH_WEAPON1 230 80 48 - - B 1.9 *

75 ARMSFIG_WEAPON 510 50(140) 48 - - L 3
76 CORSFIG_WEAPON 510 50(140) 48 - - L 3 *
96 ARMSFIG_WEAPON2 510 50(140) 48 - - L 3 *
97 CORSFIG_WEAPON2 510 50(140) 48 - - L 3 *

77 ARMAAS_WEAPON1 710 57(108) 48 - - L 2 -- see NOTE
#2
78 ARMAAS_WEAPON2 710 57(108) 48 - - L 2 *
103 ARMSHIP_MISSILE 710 57(108) 48 - - L 2
178 CORARCH_WEAPON1 710 57(108) 48 - - L 2 *
179 CORARCH_WEAPON2 710 57(108) 48 - - L 2 *

82 ARM_LASER 180 30 8 - - L .865 *
88 CORE_LASER 180 30 8 - - L .865

95 ARMSEAP_WEAPON3 510 44(130) 48 - - L 3 *
98 CORSEAP_WEAPON3 510 44(130) 48 - - L 3 *
108 ARMVTOL_MISSILE 510 44(130) 48 - - L 3

107 CORRL_MISSILE 700 45(95) 48 - - L 2
148 CORFRT_MISSILE 700 45(95) 48 - - L 2 *

112 ARMVTOL_ADVMISSILE 659 70(150) 48 - - L 3
115 ARMVTOL_ADVMISSILE2 659 70(150) 48 - - L 3 * -- see NOTE
#3

113 CORVTOL_ADVMISSILE 650 68(155) 48 - - L 3
114 CORVTOL_ADVMISSILE2 650 68(155) 48 - - L 3 *

146 ARMSEAP_WEAPON1 300 400 16 - - L 6
152 CORSEAP_WEAPON1 300 400 16 - - L 6 *
193 ARMSEAP_WEAPON2 300 400 16 - - L 6 *
194 CORSEAP_WEAPON2 300 400 16 - - L 6 *

145 ARMSCORP_WEAPON 320 400 8 - - L 1.2 *
181 CORSCORP_WEAPON 320 400 8 - - L 1.2

143 ARMFRT_MISSILE 700 46(97) 48 - - L 2 unused! *
157 ARMFARK_WEAPON 320 112 48 - - B 1.8 unused! *
158 ARMSCRAM_WEAPON 320 112 48 - - B 1.8 unused! *
162 CORHUNT_WEAPON 320 112 48 - - B 1.8 unused! *
164 ARMSEHAK_WEAPON 320 112 48 - - B 1.8 unused! *

The * (asterick) shows the weapon id #'s that have been freed up with the
removal of that weapon.

This patch frees up 32 weapons id #'s.
These are the weapon ID#'s removed in numerical order:
7,8,19,23,38,51,76,78,79,82,95,96,97,98,114,115,117,118,143,145,148,152,15
7,158,159,162,164,178,179,180,193,194
7,8,19,143,157,158,162,164 are never used even in the original game!

All of Cavedog's units use 197 weapon id #'s BEFORE this patch. (counting
unused weapons id's in the game.)
All of Cavedog's units use 165 weapon id #'s AFTER this patch.

NOTE #1:
Although the 4 antinuke weapons have VASTLY different maximum ranges, ALL
the antinukes WILL shoot down nukes fired into their protected zone from
beyond their maximum range. The only thing the antinuke weapon range

changes is how soon the antinukes fire after the nuke is fired. The
shortest-ranged antinuke weapon, CORMABM_WEAPON (Core Hedgehog's weapon)
has a weapon range of 22,000 pixels -- even this could cross from one side
to the other of a 40 x 40 map. (The largest non-3rd party map in TA is
only 40 x 40!) Since the ranges all correspond to an incredibly huge
distance, and because any of the antinuke weapons WILL shoot down nukes
fired from beyond their max range, I have removed ARMSCAB_WEAPON and
CORMABM_WEAPON and used the original antinuke weapons (AMD_ROCKET and
FMD_ROCKET) instead on the mobile antinuke vehicles.

NOTE #2:
The missile weapon used on Arm Flakker ships (and also reused on Core's
Flakker ships as well) has been modified to make them a 2-weapon unit
instead of a 3-weapon unit. This was done by halving the reload time for
the weapon, thus making it roughly equal to the original 2 weapons it
replaces. The scripting model for the AA ships also had to be changed so
the single missile weapon appeared to be firing from different turrets.

NOTE #3:
The 2 different Hawk missiles (ARMVTOL_ADVMISSILE and ARMVTOL_ADVMISSILE2)
have a tiny differance in top speed (559 vs 554 -- less than a 1%
differance), I removed the 2nd missile because for all practical purposes
they are identical. Many things in the game are rounded down to the
nearest multiple of 32 (the tilesize) and speed is probably one of them.

3rd party units don't work with Bugfix?

Some 3rd-party units may not work with this patch without changes *IF*
they use weapons removed by TA Bugfix. Like if a unit used MINDGUN as a
weapon. I tried not to take "sides" when deleting shared weapons id #'s.
If equal numbers of units used different weapons, the oldest (as in the
case of ARMRL_MISSILE) weapons id # was kept or the lowest weapons id #
was kept in the case of ARM_DISINTEGRATOR.

To make these 3rd-party units work with TA Bugfix, place the
old_weapons.ufo file in the totala directory. This will ADD BACK all the
removed weapons with corrections to them as well. This should allow almost
ANY 3rd party unit to work with TA Bugfix. (And if it doesn't please email
me.)

Speed Benifit:

Another side benifit of removing all duplicate files is an increase in
gamespeed - at least one speed notch. Also, the game will load a new
mission faster because it shuffles through fewer files.

Because of the decrease of EMG lag as well as the removal of many
categories for units, internet games and LAN games should lag less.

AI fixes:

Another bug fixed by this patch is making map OTA's use a better ai
profile. Original pre-TA:CC maps were particularly bad about their choice
of ai profiles that they used. This should make the ai's at least slightly
more effective on those maps than originally.

Map OTA Did use Now uses
------- ------- --------

Acid Foursome Acid Default
Acid Pools Hover Wind
Checker Ponds Acid Default
Crystal Cracked SeaBattle Hover
Etorrep Glacier Default Wind
Evad River Confluence AirBattle Hover *AirBattle is strictly
aircraft-only maps
Gasplant Plain Default Wind
Hundred Isles Default SeaBattle
Kill the Middle AirBattle Wind
Lava Mania Default Wind
Metal Heck Default Metal
Metal Isles Default SeaMetal
Over Crude Water AirBattle Krogoth
Ring Atoll Default Hover
Seven Islands Default SeaMetal
Shore to Shore Seabattle Hover
Show Down Default Wind
Surface Meltdown Acid Default
The Cold Place Default Wind
The Pass Default ThePass
Trout Farm Default Urban
Two Continents AirBattle Hover *AirBattle is strictly
aircraft-only maps

Descriptions of AI Profile types:
(this is what they probably should be, not what they are...)

Acid.txt
 Presumes that each player is separated by acid, so ships and ground
troops cannot (safely) get from one island to another. This means the ai
should build aircraft and hovercraft (and Pelicans).

AirBattle.txt
 Presumes that each player is separated by impassable terrain (clouds,
lava, etc) that even hovercraft cannot cross. This means the ai should
only build aircraft for attack.

Default.txt
 Presumes a big land map that all units can cross. Presumeably no water
is on the map, so making ships is pointless. So the ai should build
everything but ships.

Hover.txt
 Presumes a water map with lots of land to build many factories on.
This allows the ai to build many aircraft plants as well as hovercraft
platforms. Ships aren't neglected, but have low limits.

Krogoth.txt
 For a metal map that has water as well as land. Ground troops
presumeably can travel from almost any part of the map to any other part.
Ships aren't neglected, but have low limits.

Metal.txt
 Strictly a metal map with little or no water and no obstructions to
ground units. So the ai should build everything but ships and metal makers.

SeaBattle.txt
 Presumes a water map with limited land to build factories on. Ships
are the main form of attack or defense, but small numbers of air plants
and hovercraft platforms might be built.

SeaMetal.txt (Does not normally exist in the game!)
 A metal water map, presumeably with lots of land to build many
factories on. This allows the ai to build many aircraft plants as well as
hovercraft platforms. Ships are still a major form of attack but by no
means the only one. Actually, this is just a metal form of the Hover.txt
ai -- with the exception that the ai shouldn't make metal makers.

ThePass.txt (Does not normally exist in the game!)
 A special map ai, designed specifically for The Pass map. It builds
very few factories or base defenses to conserve its very limited build
space, nor does it build many metal extractors.

Waterwrld.txt
 Presumes an entirely water map. Ships are the only form of attack or
defense, with seaplane platforms as the only other factory type. The ai
should not try to build any land-based factories.

Wind.txt (Does not normally exist in the game!)
 Presumes a big land map that all units can cross. Presumeably no water
is on the map, so making ships is pointless. So the ai should build
everything but ships and solars. However the ai's primary early energy
source is wind generators instead of solars.

Urban.txt
 Presumes a water map with lots of land to build many factories on.
This allows the ai to build many aircraft plants as well as hovercraft
platforms. Ships aren't neglected, but have low limits. Also, this map is
low on resources but may have reclaimable objects (buildings, rocks, and
trees) to make up for this lack. Also presumes there is underwater metal
spots.

SIDEDATA.TDF changes:

The ai's build menus are pretty messed up:
(this is stored in the SIDEDATA.TDF file in the GAMEDATA dir.)

FIXED: Core is unable to build seaplane platforms and advanced
construction subs!
FIXED: Arm's seaplane platforms sometimes quit building for no reason!
ADDED: All the TA:CC units that were missing, plus the 6 post-v3.1 patch
units.
I left the ability of the ai's construction hovercraft to build advanced
vehicle plants and the ability of the ai's construction seaplanes to build

advanced k-bot labs in, because it is only a small advantage for the ai --
and the ai needs that (and more) to compete with good players.

Ai profile changes:

There are NO ai profiles in][BF14.ufo! TA Bugfix uses the ai profile
files found in the old Rev31.gp3 file (renamed Rev31.ccx or incorporated
into totala1.hpi) instead. I did not include my ai profiles (that is found
on other websites) with this patch. Also, ai profiles are something that
typically get changed often like maps do - which is much easier to do if
the ai files are in an AI directory instead of buried inside of a ufo file.

Single-player Mission changes:

Some single-player maps have been altered so they can be used as
multiplayer maps as well, HOWEVER they *MUST* be installed to the
harddrive in order to run (the big totala4.hpi file, that is).

Also, a small and currently incomplete Arm campaign has been added as
well. It takes place at about the same time as the missions in TA and
TA:CC.

The missions will play better if ai profiles are added to augment them!
The special ai profiles they use are:
SeaMMiss.txt for Sea Metal maps
Sea_Miss.txt for Sea maps

The Krogoth Campaign has been altered so the original hard setting is now
only the medium setting. The new hard setting adds only 1 enemy unit to
the ai and removes much of the waittimes placed on the enemy units. This
makes the ai attack earlier and with greater strength, and resupplies its
attack force quicker. I personally have beaten it, but it is very hard.
For those that find either version too much, an easy version has been
added as well - but even it is no cakewalk.

There is a major (in my opinion!) mission bug in every mission included in
TA:
The ai will not automatically build MOST TA units added after the very
first v1.0 release! Strangely, there are a handful of units that don't
have this problem. These are:
armscorp, cormabm, cornecro, corplas, corscorp, cortruck

Probably can be built by the ai as well:
armscab, armss, armgate, corgate, corbuild (but only the ai would be able
to build it!), and both the arm and core beac and dev1.

NOTE: Normally most of these units aren't buildable, but once a download
tdf file is added to build them the ai WILL build them!

I am hard at work to make it so the ai can autobuild *ANY* units in TA in
missions, even if they're 3rd party units. This is *IF* the ai is allowed
to build them at all. (via the useonly files.) So, if the unit is grayed
out the ai cannot build it.

Minor Map changes:

I moved around a few of the starting locations on some maps because of
conflicts -- either the commander starts out "stuck" on/in the scenery, or
starts very close to other commanders.

I did this on these maps:
Painted Desert (w/ more than a 4 player start, players 1 and 5 were close
together. Player 5 is now located in the center.)
Town and Country (one player starts out embedded in a car)
Evad River Confluence (tidal strength has been increased from 0 to 15 --
this is supposedly a river isn't it?)

New control options!

These new CTRL hotkey shortcuts are designed to eliminate some of the
micromanagement in controlling all your units:

CTRL+G - ground units (armed ground units only)
CTRL+H - hovercraft (armed hovercraft only) (Hovercraft are *NOT* selected
with CTRL+G)
CTRL+L - Laser towers + other fixed defenses (but not AA towers!)
CTRL+N - Naval units (armed ships only)
CTRL+Q - AA towers (Missile Towers, Flakkers, Naval Missile Towers)
CTRL+T - Torpedo Launchers (fixed versions only)
CTRL+X - superweapons such as antinukes, nuke silos, and berthas (LRPC's)

NOTE: Pelicans are selecetable with both CTRL+G and CTRL+H.
NOTE: The crawling bombs cannot be selected with CTRL+G, because their
"weapon" is their death.
NOTE: Decoy commanders are not selectable with either CTRL+G or CTRL+W,
but are selectable with CTRL+B.
NOTE: Minelayers, Arm FARK, and Core Necro are selectable with CTRL+B.

The "X" key is now a hotkey shortcut for nuke silos and antinuke silos
build menus. It will repeat the last mouse build command for that silo -
to either build 1 missile or to remove 1 missile from the build que. It
can be used with the shift key to build/remove 5 missiles at a time - hold
down shift+"X" to queue up many missiles quickly.

The Arm Annihilator and Core Doomsday Machine now have an On/Off switch.
When set to "Off", the turrets act as normal - opening as neccessary when
an enemy comes into range. When set to "On", the turret remains in an
always open state. Changing from "On" to "Off" causes the turret to
immediately begin its close-up sequence regardless of what the turret is
doing. The turrets need to be set to "HOLD FIRE" to remain closed and
"OFF".
(Sadly, we're still having problems with the Annihilator and the Doomsday
Machine -- when set to "OFF" and fire at will and something comes into
range, they turn themselves "ON" and remain "ON".

Also added to the Core Doomsday Machine is the "D-Gun" option. This does
NOT fire a D-gun but instead fires the Core Doomsday Machine's 3rd weapon
-- its red (LLT) laser. By using "Attack" in combination with the "D" key

(using shift), the DDM can fire at multiple targets at once using
different weapons on each.

The Core Krogoth also has the "D-Gun" option to fire its 3rd weapon, its
arm-mounted Gauss Guns.

Category changes in unit FBI files:

Morty is now treated as a LEVEL2 unit in its FBI file.
Both the Arm Samson and Core Slasher are now LEVEL1 units -- not LEVEL2
like they were.
Thuds can no longer be selected with CTRL+P.
Most/all units have ALTERED category information in their FBI.
Any units with radar, sonar, or jamming ability are now selectable with
CTRL+R.
The Targetting Facility can now be selected with CTRL+R.
ALL Underwater units now have the UNDERWATER category in their FBI.
These categories have been totally removed:
ANTISUB, BEACON, BOMB, CARRY, defensive, DEV, extractor, HOVER, JAM,
KAMIKAZE, KBOT, LEVEL, LEVEL10, MINE, MINELAYER, PARAL, PHIB, RAD,
REPAIRPAD, SCORP, SHIP, SONAR, SPECIAL, SPY, STEALTH, STORAGE, strategic,
TANK, TPORT, VTOL

Although this seems excessive, the categories tell the ai what category
each unit is in. Since this information was not used by the ai (or did not
appear to be used), it was removed.

These categories have been added: CTRL_G, CTRL_H, CTRL_L, CTRL_N, CTRL_Q,
CTRL_T, CTRL_X, NOTSTRUCTURE
CONSTR and PLANT were added back because ai profiles DESPERATELY needs
this information!

TORP now takes the place of ANTISUB
CTRL_H now takes the place of HOVER
CTRL_G now takes the place of KBOT -- selects all ground units with weapons
CTRL_G now takes the place of TANK -- selects all ground units with weapons
CTRL_L now takes the place of DEFENSIVE -- selects all Laser towers +
other fixed defenses
CTRL_M now takes the place of MINE
CTRL_N now takes the place of SHIP -- selects all naval ships with weapons
CTRL_Q now takes the place of SPECIAL -- selects all AA towers
CTRL_R now takes the place of JAM
CTRL_R now takes the place of RAD
CTRL_R now takes the place of SONAR
CTRL_T now takes the place of TORP -- selects torpedo launchers
CTRL_V now takes the place of VTOL
CTRL_X now takes the place of strategic -- and selects antinukes, nuke
silos, and bertha weapons.
Because the remaining categories make decent substitutions, the originals
are not needed.

Units ai behavior is improved with appropriate badtarget lines in their
FBI.

Both Light Carriers have an added "ENERGY" line in their categories in
their FBI file.

The Geothermal Plant, Energy Storage, Underwater Energy Storage, Fusion
Reactor, and Underwater Fusion Reactor have an added "METAL" line in their
categories in their FBI file. Although this is incorrect, it should
encourage the ai to build them more often and will have no effect on the
player. Also, the Moho Metal Makers no longer have the "METAL" line in
their categories in their FBI file. This is to partially overcome the ai's
tendancy to build moho metal makers when it has nothing but solars to
power it and will also have no effect on the player.

Core Slinger (CORAH) had BadTargetCategory=VTOL;
Arm Swatter (ARMAH) had BadTargetCategory=VTOL;
even though they're ANTI-Aircraft hovercraft!

Core Thunderbolt, Floating Heavy Laser Tower (CORFHLT) had
BadTargetCategory=NOTAIR;
but it's HARDLY an AA weapon!

Core Shadow (CORSHAD) had NoChaseCategory=UNDERWATER;
but it's very unlikely that it'd ever find an underwater target to chase
in the first place.
(All bombers have this line!)

Note that +SHOOTALL overrides the bad target settings, allowing units to
autotarget resources and the like.
Also, bad target setting have been changed so units don't shoot at c-units
and factories by default.

The BadTargetCategory= line seems to be "overall" for *ALL* the weapons on
the unit. (But is sometimes ignored!)
The NoChaseCategory= line seems to be for whether the unit will chase a
unit it's told to attack if it moves out of range.
The wpri_BadTargetCategory= line seems to disallow the FIRST weapon of
that unit from targetting certain enemy types. It is the GREATEST deciding
factor on what the unit will target quickly and what it will ignore if
other units are around.

For missile weapons with AA uses, what seemed to work best was:
wpri_BadTargetCategory=NOTAIR;
BadTargetCategory=NOWEAPON;
This means firstly, it would ignore units not flying (NOTAIR) and out of
the flying units it would prefer units with weapons. The other way around
made them too likely to shoot at anything with a weapon -- whether it was
flying or not!

COB script file changes:

The Core Spy no longer "runs" while being built.
Both sides' Construction Kbots (both Basic and Advanced), Core Necro, and
Arm FARK should almost never have guarding and building problems now.

Almost *ALL* buildings that close when damaged were not becoming armored
when closed - DESPITE having a damage modifier line in their FBI file that
says that they should be! This happens to the Arm Annihilator, Arm
Advanced Radar (although it lacks a damagemodifier line, since it's closed
it should be slightly tougher - so I added a damamgemodifier of 0.5, this

will have little effect because it is so fragile), the Core Doomsday
Machine, the Moho Metal Makers, both side's Targeting Facilities, and both
side's antinukes were *NOT* more resistant to damage while in a closed
state. Antinuke silos are fragile and easy to kill because of this bug.
THIS has been fixed!

To make matters worse about this failure to armor bug, the Arm Advanced
Radar, both side's solars, both side's sonars, and both side's moho metal
makers incorrectly OPEN and activate when shot -- even when not COMPLETELY
BUILT! This makes them easier to kill. This has been fixed as well.

The Core Viper pop-up HLT had a scripting error that caused it to not
leave a corpse, this has been corrected. The corpse metal value has also
been reduced to less than the metal cost of the Viper.

A few multi-weapon units have an either-or approach to using their weapon.
The Arm Warrior for instance will fire either its cannon OR its EMG but
seldom both.

The fixed Arm Warrior attempts to use both weapons at once, if in range.
Even with the original unit, this could be done by using "Hold Position"
and "Fire at Will" and ordering the Warrior to move near an enemy instead
of ordering it to attack the enemy - this fix just removes the
micromanagement involved. This was done with a COB fix.

Both side's Flakker ships have lost their second missile weapon, leaving
them with 2 weapons -
weapon 1: their first missile weapon
weapon 3: their flakker weapon
The flakker weapon had to be made weapon 3 instead of weapon 2, or it
would be force-fireable (which would make it able to destroy almost any
unit not strictly immune very quickly.)
This means the flakker ships should shoot their flakkers more often. This
was done with a COB fix and an FBI change. The reload time on the
remaining missile weapon used on Arm Flakker ships (and also reused on
Core's Flakker ships as well) has been halved, thus making it roughly
equal to the 2 original missile weapons it replaces.

The Core amphibious K-Bot, the Gimp, should now use both of its weapons at
the same time. Just like the Arm Warrior, the Gimp could use both of its
weapons at once - but only if not ordered to attack a specific target.
This should help make the Core Gimp more effective against the Arm Pelican
without requiring changes on either of their stats. This was done with a
COB fix.

The Arm Maverick and Arm Zeus will now take considerably longer (about 10
seconds) to put their guns away -- this will decrease the likelyhood that
they are "disarmed" during intermittent fighting.

The Core Battleship's laser turret animation has been corrected so the 3rd
barrel rotates into position.

The Arm Wind Generator's blades have now been changed to spin in opposite
direction from the originals. This better matches the wind direction as
seen by which way smoke blows.

The Arm Jethro, Arm Pelican, Arm Phalanx, Arm Samson, Core Copperhead, and
Core Slasher have modified unit COB scripts to make them less likely to
ignore enemy aicraft flying past them.

The Arm and Core Scorpion has a simplified COB script.

Almost all Hovercraft have modified unit COB scripts, so they won't leave
blocking wreckage in the water. Instead, they will leave passable
wreckage. While on land, they can still leave blocking wreckage. SOME of
the hovercraft scripts also have corrected explosions.

Arm Stunner EMP silo and Core Nuke silo both have a COB script
modification to prevent the problem the ai has when using this silo.
Previously when the ai used these launchers, conditions could occur which
caused the missile to explode inside the silo instead of launching!

If I included a COB file in TA Bugfix, it definitely makes some changes
over the original -- with the exceptions of the 6 extra Cavedog units,
their COBs were needed to work.

Core Necro changes:

Changes made from the original Necro:
1.Name change from "Ressurrection Kbot" to "Necro".
2.Added builddistance=30; to the necro.tdf file, so it doesn't have to be
touching units and wreckage to repair them.
3.Removed bogus attack button information in the necro.tdf file.
4.Fixed necro's unit script so that the guard factory bug (where the necro
gets "STUCK" repairing units built by the plant even after they've left
the plant) happens less frequently. (Total elimination of this bug is
nearly impossible though, because what triggers the bug seems to be the
interaction of many scripts at once: factory, necro, and unit being
built.) This bug *ALSO* affects any repetitious nanolathe animations, even
back-to-back ressurrections that don't require movement.

Why I made these changes to the Necro:

1.The Necro, which was obviously found and released as it, has the bug of
not even being called the Necro.
2.The Necro could not reliably repair units because of a missing
"builddistance=###;" in its cornecro.fbi file. Any number between 20 and
100 could be used for builddistance, but I chose 30 after talking with
Boneyards sysops about how the Core Necro affects game balance. If I gave
it a value of 60, like the Arm FARK, it could be abused by making it
possible to guard a single adv. air plant with 10 or more Necros!
3.And to further confuse matters, the Necro has bogus attack information
in its cornecro.fbi file!
4.The Core Necro has the same build/assist scripting problems as the Core
Adv. C-Kbot -- which means other than the Decoy Commander (which is a very
weak construction unit) Core does not have a reliable construction unit
that is built by its Advanced K-Bot lab.

The results of these changes:

With a too-large builddistance, the Necro would be able to do everything
the Arm FARK could AND ressurrect units as well! I tried to avoid this by
making the Necro's builddistance tiny -- even shorter than most Level 1
construction units (which normally have a builddistance of 40.)

Core's Necro is still only a so-so Arm FARK counter. Although it costs
less metal than the FARK, it costs 3 times as much energy, is built 40%
slower, has far less armor (paper thin, in fact), doesn't make any
resources (the FARK makes +0.5m/s and +17e/s), would assist factories at a
slower rate than the FARK, cannot be used to MASS-assist a single factory
like the FARK can, and has a considerably slower top speed. But at least
with this fix, it can ressurect and repair correctly unlike the original.
And if you don't have any wreckage around to rez, it can even reclaim
rocks and trees (while on Patrol) and repair already-living units (while
on Patrol or ordered to repair) -- which is something it previously had
great trouble doing! Only 1-3 Necros can get close enough to a single
factory to assist in building mobile units, and then they often block the
factory's exit. After all these changes, the Necro goes from being a
micromanagement pain to use (because it was always failing to complete
orders and would sit idle) to easy and FUN to use. This gives Core a
workable but LESSER counter for the Arm FARK. (in my opinion)

Antinuke silo changes:

I've added a weapons line "toaironly=1;" to the antinuke missiles for the
Arm Protector and Scarab and Core FMD and Hedgehog so that they will not
open and attempt to shoot at anything other than aircraft that hit them.
This negated their 0.5 damage modifier they gained for being closed and
made them TWICE as easy to destroy. Sadly, they still open stupidly when
aircraft shoot them - but I could find no weapons-modifying line that
could tell them to ignore attacks by aircraft. So I settled for the
partial fix instead of none at all. I also made it so antinuke silos
should only stay open for 10 seconds after firing a missile. This keeps
the "window of opportunity" to destroy them while they're open and more
vulnerable reasonably small without interfering with their standard
operations.

Originally, if the Core Antinuke silo (CORFMD) is ever nuke-flooded -- and
the silo survives -- the silo locks up and refuses to ever fire at nuke
missiles again even if it has missiles in it.

BEFORE my changes, ALL antinuke silos can temporarily overload and quit
firing if 5 or more nukes are fired at them at once. (This is what "nuke-
flooded" means.) Once ALL nukes have impacted or are shot down, they might
resume firing. The antinuke's animation scripts cannot keep up with how
fast the antinuke fires, causing the antinuke to refuse to fire until
there are no more incoming nukes and resets its variables. A "workaround"
for the problem is to put the antinuke on hold fire, resetting its script,
then back on fire at will -- which should cause it to resume firing.

To get the antinuke silo's animations to match their actions, I had to
slow down their rate-of-fire slightly and both speed up and simplify their
animations, especially for Arm's antinuke.

Arm's antinuke silo's rotary launcher was much too slow for the rate-of-
fire needed in the event of a nuke-flood, and did not match its apparent
rate-of-fire. Originally, it ignored the position of the rotary launcher
and fired multiple antinukes almost instantaneously, while the rotary
launcher would continue to rotate erratically -- sometimes even reversing
direction! Now, Arm's antinuke silo loads 3 antinuke missiles on 3
separate launch rails (in a triangular configuration) and has to close and

rearm after every 3 shots. It does this quickly enough to seldom cause
problems.

Core's antinuke silo has to close and rearm after EVERY shot, but it
rearms faster than Arm's antinuke silo so both should be balanced yet
still retain originality.

The mobile antinukes needed only a firerate reduction to remove most of
their problems.

After all the antinuke changes, the fixed antinuke silos can fire slightly
quicker than their mobile counterparts. This should make fixed antinukes
worthwhile versis their mobile counterparts which cost the same.

Arm Stunner EMP silo changes:

The Arm EMP Silo's paralyzation was changed so ANY units not mentioned in
its weapon damage file are affected by it - previously, they were immune.
This will affect almost all 3rd party units and any new Core and Arm units
not specifically mentioned as immune in the damage lists. Unless many 3rd
party units are used, this should have little effect on gameplay. I didn't
do the same to the Core Neutron Silo because it affects only Arm mobile
units - not ALL of Arm's units. Having the Neutron damage ALL 3rd party
units would be imbalancing.

Krogoth changes:

Krogoth Duplication Bug:

When a healthy vetran krogoth is captured, self-d'ed, or traded, the
krogoth (being captured, self-d'ed, or traded) has 30,000 damage done to
it which is LESS than its total health. So the original krogoth (that was
captured, self-d'ed, or traded) lives, barely; and a NEW healthy duplicate
is created as well. By repeating this cheat, krogoths can be created for
free! This fix reduces the krogoth's health to half (to 14,959 which is
half of 29,918) and adds a damagemodifier=0.5; line in its FBI file, which
makes the krogoth have 1/2 the health but take 1/2 damage all the time. A
COB file fix was also needed which set the Krogoth to the always armored
state.

When the modified krogoth is captured, self-d'ed, or traded the 30,000
damage ignores the damagemodifier=0.5; in its FBI file. So, the original
is removed when the copy is created. This prevents the appearance of
extra, but badly damaged, krogoths. One small but extra benifit is
Krogoths will be repairable at double their original rate - so it'll take
a construction aircraft about 5 minutes to repair a badly damaged krogoth
instead of 10 minutes.

Also to maximize the krogoth's damage potential in combat, its 3 weapons
have been moved around. Since the krogoth tends to use its primary weapon
over its secondary weapons, it makes good sense to make its primary weapon
one it can use in MOST situations.

The weapons are swaped around to:
Weapon1=CORKROG_HEAD;
Weapon2=CORKROG_ROCKET;
Weapon3=CORKROG_FIRE;

The bad target categories are changed to:

wpri_BadTargetCategory=LEVEL1;
wsec_BadTargetCategory=NOTAIR;
wspe_BadTargetCategory=CTRL_V;
BadTargetCategory=NOWEAPON;
NoChaseCategory=CTRL_V;

The weapons will still fire at bad targets, but only if ordered or if
there are no other targets available.

Also added to the Krogoth is the "D-Gun" option. This does NOT fire a D-
gun but instead fires the Krogoth's Gauss guns on its arms. When "Attack"
is used in conjuction with the "D-Gun" option (via the shift key), the
Krogoth will fire all its weapons at once -- possibly even at different
targets! When using "Attack" alone, the Krogoth will only try to get
within range of its head-mounted Blue Laser (700 pixel range) from the
target.

The Krogoth can now be selected to built in the Krogoth Gantry using the
"K" key when the Gantry is selected and the Krogoth is showing on the
menu. Page 3 of the Krogoth Gantry also has a LARGE Krogoth build pic. It
is linked to the normal Krogoth build pic on page 2, so clicking on one is
the same as clicking on the other.

Landmines Changes:

Minelayers are now selectable with CTRL+B (as Constructors) and now have
patrol, guard, and reclaim abilities! They are still considerably slower
than C-vehicles, nearly as costly, do not make resources on their own,
plus they have only landmines on their build menu - but now at least they
can clean up the messes their minefields can make!

Landmines can now all have their fire orders changed to HOLD FIRE, RETURN
FIRE, and FIRE AT WILL. Why a player would want to is questionable, but
since they qualify as a weapon - it makes sense that they have a "safety"
feature too. The Nuclear Mines default to HOLD FIRE, but all others
default to FIRE AT WILL. While a landmine is set on Hold Fire, it can be
manually detonated for maximum damage effect. Or, landmines can be used as
cloaked spotters. (Their poor LOS range, cloaking cost, and lack of armor
makes landmines poor spotters.)

Originally, landmines were only resistant to damage caused by landmines of
the exact same kind. This has been changed so that all landmines of one
side are resistant to other mine's damages of the same side. The only
exception is the nuclear mine's explosion which kills ALL landmines nearby
-- and just about everything else too! Arm mines affect Core mines and
vice-versa just fine. This is done to encourage the use of dissimilar mine
types in a tightly packed minefield.

Previously, the Arm Precision Mine (ARMMINE5) had 2,000 armor while ALL
other mines had only 100 or 200 armor. Because the mine is extremely tough
for such a cheap price (which is unbalanced), I presume an extra
unintended 0 was inadvertently put there. The armor has been reduced to
200 -- still TWICE as much as all other Arm mines. (Sorry Arm players,
there goes your "killer" strat.)

Both side's Nuclear Mines can now be built underwater. However, since the
minelayers can drive only into shallow water, a naval construction unit is
required to build them in deep water. So, Nuclear Mines have been added to
the Advanced Construction Sub's build menu. (Page 3, position 5) This
should be useful as a naval defense against Fibbed subs and Leviathans,
which previously lacked good counters. Nuclear Mines have a tiny LOS
radius, no sonar, damage both friendly and enemy units, are one-shots, and
cost a considerable amount of resources -- making this change difficult to
abuse.

LRPC Changes:

All the LRPC's (Arm Big Bertha, Arm Vulcan, Core Buzzsaw, Core
Intimidator) have been modified so the direction they point when built
isn't always straight down. Now, they can be pointed to the left, down, or
to the right. I tried making them so they could point up also, but
something caused them to be unable to fire when they were built facing up.

I added an On/Off switch to the Arm Vulcan. Consider it a single-shot/full
auto fire switch. While On, the Vulcan fires at its normal superfast
drain-your-energy-dry rate. While Off, the Vulcan fires at the same rate
as an Arm Bertha -- making it likely to be mistaken as one by its rate-of-
fire and its sound. It also doesn't require 8+ fusions to sustain fire
when firing while Off.

The Core Buzzsaw doesn't get this On/Off feature because I couldn't get
its unit script to work with it. Plus, it costs almost 10,000 metal
cheaper than the Arm Vulcan so it's "balanced" not for it to get this
minor ability.

Bugfix for the Arm Pelican:

Despite the many and much heated debates about the Pelican being too
powerful in TA, I still prefer to think of the Pelican (and Flash as well,
but that's a different story) as a legitimate unit in TA. However,
missiles aimed at the pelican when it is on the water tend to hit the
water instead of the Pelican unless fired from nearly point-blank range.
This is a bug or is at least unintentional on the designers part. All
ships are targetted correctly by missiles, SO if pelicans are in fact
meant to be a ship (but then why the Floater=0; line? -- all ships have a
Floater=1; line!), subs should be able to target them. However, subs
cannot target them. (But subs can force-fire past them, hitting the
Pelicans. The same trick can be done to all Hovers.) Pelicans also have a
canhover=1; line which ALL other hovercraft have as well - which proves
that Pelicans are hovercraft and not ships. Pelicans currently use
waterline=9; which is ODD because all hovercraft lack a waterline=9; in

their unit FBI file -- which due to its absence defaults to 0. So
obviously, part of the Pelican is hiding below the waterline -- which is
where missiles are aiming in their attempt to hit them. However 1 other
fact remains which causes the behavoir of even partially underwater
Pelicans to not make any sense: Pelicans take NO DAMAGE from acid on acid
maps! As such, there is a simple fix for the WHOLE problem: set the
pelican's waterline to 0 so it isn't partially underwater.

Pelicans may appear to be hovering over the water with this fix when
viewed at 640 x 480. I couldn't tell any differance myself except that
missiles hit the modified Pelicans more reliably. HOWEVER, any missiles
fired from near or at max range that might miss an ordinary hovercraft
could well miss the Pelican as well. This change does nothing else to the
Pelican's unit stats, nor does it change how any other weapon is fired at
them. It only allows missiles and direct-fire rockets to hit Pelicans as
they would any ship or hovercraft in the same conditions.

Bugfix for ALL Hovercraft:

(This idea was taken straight from BSR's UH.)
Hovercraft leave passabled debris when destroyed on the water. (That is IF
they leave debris!) The debris created is also left on land IF the
hovercraft is badly destroyed. The debris is roughly half as valuable and
half as tough as the "shell" wreckage is.
Arm Anaconda's corpse has been increased in value from 105metal to
205metal -- this is a probable typo, because Core's equivalent hovercraft,
the Core Snapper, has a corpse value of 224metal! Normally, corpses are
worth roughly 60-80% the metal value of the unit it came from -- but this
corpse originally was only worth 38.6% the value of the original Arm
Anaconda.

This required a new COB script for every hovercraft in TA, as well as
changes to the 4 corpse files.

Bugfix for Naval Defensive Structures:

Both side's floating HLT's and Core's floating missile tower's waterlines
have been changed from 3 and 4 respectively to 0.3 -- this will allow them
to better shoot over naval dragon's teeth while still allowing subs to
target them. It will also allow guided missiles targetted at them to hit
them from a longer range, previously the missiles would hit the water like
the Pelican bug (see above).

Bugfix for the Naval Dragons Teeth:

Naval Dragons Teeth are made to sit deeper in the water to allow naval
HLT's and missile towers to shoot over them. Originally, naval HLT's and
missile towers could not do so reliably -- which makes countering Pelicans
all the more difficult! This would also act as slightly better torpedo
netting against subs.

Bugfix for the Arm Penetrator:

Originally, Penetrators could recenter their turret quicker than the
turret turns to aim! It's also the slowest-turning turret in the game. Why
not aim the turret as fast as it can recenter in the first place? It won't
be around to recenter if it can't acquire the target! So, the Penetrator's
turret has been changed to a faster-turning (but still slow) turret with
the same turret speed as its larger counterpart, the Arm Annihilator. The
Penetrator's weapon lacks the range and damage of the Arm Annihilator and
costs nearly as much energy to fire -- these characteristics I have not
changed.

EMG weapon changes:

I edited the Flash tank's, Brawler's, and Warrior's EMG weapons to not
make any impact noise (soundhit=; in their weapon file) -- this should
decrease lag caused by these weapons immensely. However, you should still
hear them firing *JUST* fine.

I changed their sound behavior with:
soundtrigger=0;
which makes only 1 firing sound per burst of shots.
An altered sound file was made which plays the sound of an entire burst of
shots as a single wave.

In the 3 EMG weapons (Flash/PW, Brawler, Warrior) files, I replaced:
 startsmoke=1;
WITH:
 startsmoke=0;
 endsmoke=0;

Those tiny smoke puffs were very hard to see on 640 x 480 - on anything
higher, nearly impossible.

Also, I removed the wave for weapon impact (changing it to):
 soundhit=;

All the impacting pictures for EMG have been removed as well, they were
also a major source of lag. Unfortunately, the impact smoke animation is
still visible -- that can only be removed by using +SFX while ingame.

That is all I have done for the lag on emg units.

Core Pyro changes:

I removed the wave for weapon impact (changing it to):
 soundhit=;

These shoot 17 times every 1.2 seconds - which in theory would make them a
bigger lag-producer than EMG weapons!
This has been changed to firing a burst of 5 shots over almost exactly the
same time period (0.7 sec instead of 0.68 sec) and doing the same total
damage of 170 as the orginal to all units but pyros, but doing 1 extra
point of damage to them for the whole burst - 35 damage instead of 34 like
the original.

Crawling Bomb changes:

Crawling bombs have their self-d countdown reduced to 2, the same as
landmines. This will *NOT* speed up the countdown of a flying bomb so it
should have little effect on the game. This allows crawling bombs on the
ground to be a slightly more viable tactic without changing a variety of
their statistics. Just as before, a crawling bomb can be told to attack
the ground just in front of it to cause an instant explosion without the 2
(or 5) second self-d delay!

Arm Fibber changes:

Not much else can be done about the Arm Fibber, it's just one unfair unit
because of the way sonar jamming works. Sonar jamming gives the equivalent
to underwater cloaking on ALL units within the jamming radius, and in the
case of the Fibber this costs NO energy! (Even mincloakdistance=100; does
not negate this cloaking-like effect.) The ONLY change done to the Arm
Fibber is if the Fibber somehow takes damage, its sonar jamming effect is
temporarily disabled for about 5 seconds. This is no different than a
radar that turns off briefly when hit, and should help slightly in "Fibber
war" games.

Core Leviathan Super-Sub changes:

SoundCategory=ARM_SUB;
has been changed to:
SoundCategory=CORE_SUB;
since it is after all a *CORE* sub!

It turns out that this sub partially sticks up out of the water if it
moves into water that's too shallow. This will not be changed, and should
be good reason to keep your Leviathan subs in DEEP water!

Cruiser and Destroyer Changes:

On ALL ships with Depth-Charge, (This is the Arm and Core Cruisers and
Destroyers -- 4 ships in all) the depth-charge weapon has been moved from
weapon 2 to weapon 3. This will allow these ships to hold position and
fire their guns at range when told to attack a distant target, without
them attempting to move within depth-charge range. The depth-charge will

still automatically shoot at subs in range, but can also be manually
targetted at legitimate targets. Unfortunately, Fire at Will *AND*
+shootall has to be activated before they will shoot at weaponless
underwater buildings. This is how it's always been, so there's no real
change except Destroyers and Cruisers will no longer "charge" the shore
trying to get in depth-charge range of inland targets.

Missile Frigate Changes:

These units have less than 1/3 the armor of the cheaper cruisers made by
the same factory, yet prove less useful in almost every case. The only
semi-useful task they can perform is base bombardment, but because they
are terribly slow, unmanueverable, and poorly armored the only base
they're likely to bombard is your own when they attempt to shoot down
enemy aircraft with their heavy rockets.

To combat the lack of armor, I did not change the ship's armor stat but
rather looked at the ship's design. Because the heavy rocket launcher
occupies about 1/2 the ship's length, I gave the missile frigates a 1/2
damage modifier when it is closed and not exposing the ship's innards and
live heavy rockets on the launcher. This makes them just over half as
tough as a cruiser when closed.

To combat the friendly fire problems caused by the heavy rockets, I added
an On/Off switch to these ships which controls whether or not the heavy
rockets will fire. On Core's Missile Frigate, this also has the
unfortunate effect of turning off its radar, so I made the radar quit
spinning while off as well. While set to the "Off" state, the missile
frigates will still fire their AA missiles at enemies if any are in range.

Advanced bomber changes:

All the impacting pictures for the advanced bombers laser have been
removed, they were a major source of lag when 10+ advanced bombers
attacked at once.

Anti-Aircraft missiles changed:

Despite the obvious problem of all anti-aircraft missiles not doing extra
damage to all aircraft, especially 3rd party ones, this is not really a
bug. The Seaplanes found in TA:CC are an example of how Cavedog tried to
work around this problem. They take less damage from anti-aircraft
missiles than other Cavedog aircaft, but they have less health so it
averages out. The problem is, it looks like Cavedog intended to add them
to the special damage lists (and added them to the stealth fighters'
missiles) but not to anything else. This is incredibly imbalancing because
stealth fighters can destroy them easily - often with only 1 missile hit,
while they need 4 to 5 hits to kill 1 stealth. However, they still have a
weakness to flakker weapons which do full damage to them. All other weapon
types kill them easier too.

I removed the special damage lines for ARMSEAP, ARMSFIG, ARMSEHAK,
CORHUNT, CORSEAP, CORSFIG on these weapons:
ARMVTOL_ADVMISSILE (ID=112)
CORVTOL_ADVMISSILE (ID=113)
CORAH_WEAPON (ID=199)

Flakker changes:

It's been pointed out that flakkers are often as dangerous TO your base as
it is to enemy aircraft. As a fix, I'm adding a "unitsonly=1;" line to all
flakker weapons. This will prevent the flakker weapon from detonating when
it hits the ground or when it hits DT. Zero-damage lines have also been
added to the tall buildings that were typically affected by the flakkers -
now if for some reason the flakkers do hit them, the damage the buildings
take is zero. The flakker weapon names and weapon id numbers are:
ARMFLAK_GUN ID=42
CORFLAK_GUN ID=43
ARMyork_GUN ID=116
CORSENT_GUN ID=133

(Note: The other flakker weapons in the game have been absorbed into the
above 4 weapons, so all flakkers used in the game are affected by this
change.)

This may not be considered a bug, but is a big game balance issue -
because what's the point of making an anti-aircraft weapon that destroys
your base when it misses? This is like an antinuke that nukes your base if
it misses an incomming nuke!

Zero-tolerance bug:

MANY units in the game have a terrible target-tracking problem because of
an overprecise TOLERANCE=###; line in their weapons file. More
specifically, for many original TA units (but not for any of the
downloadable add-on units) there is no TOLERANCE=###; line at all! This
means the turret/torso of the unit had to be precisely aimed on the center
of the target before it would fire its weapon. A good example of this is
the commanders' lasers, Arm Zeus, or Core AK. They would track a target
but seldom fire at it if the target moved by them quickly. I would NOT
have considered this a bug, except for the fact that Cavedog has included
a TOLERANCE=###; line for all but 1 of the downloadable units released
AFTER the original game came out. I added a low tolerance to all the
tolerance-lacking weapons.

Weapons Changes:

COMMANDER_BLAST has been altered to be a nuclear missile weapon that has a
5 minute buildtime with a massive cost - 2x the metal and 3x the energy as

the regular nuke weapon. This will have NO effect on the game, but allows
for the design of 3rd party units with this "new" oddball weapon.
CRAWL_BLAST has been altered to be a medium-ranged mini nuclear missile
weapon with a cost slightly greater than the Arm Stunner missile weapon.
This will have NO effect on the game, but allows for the design of 3rd
party units with this "new" oddball weapon.
ARM_DISINTEGRATOR will no longer start fires (firestarter=0;) -- the D-gun
should destroy trees, not burn them!
Both the COMMANDER_BLAST and the CRAWL_BLAST have been set so they will
destroy trees (firestarter=0;) instead of setting them on fire. This will
make the Crawling Bombs good for clearing trees -- and almost nothing
should survive a commander explosion!

5 explosion weapons have been turned into true weapons:

 Weapon Area of Cost Reload
ID Name Range Damage Effect Metal Energy Path Time
-- Special note

Used by:
BEFORE:
37 CORMINE3(M-303) 480 700(45) 160 - - B 3.6 10% edge effect

Core Mine #3
110 MEDIUM_UNIT 480 250 95 - - B 3.6

Medium Unit self-d
185 ARMMINE2(Area) 480 600(30) 200 - - B 3.6 5% edge effect Arm
Mine #2
204 SMALL_UNIT 480 200 75 - - B 3.6

Small Unit self-d
207 MEDIUM_BUILDINGEX 480 100 105 - - B 3.6

Medium Building explosion
213 COMMANDER_BLAST 380 9999 950 - - B 3.6 75% edge effect

Commander explosion
214 CRAWL_BLAST 480 2500 556 - - B 3.6

Crawling Bomb self-d

AFTER:
37 CORMINE3(M-303) 780 700(45) 160 - - L 6.48 10% edge effect

TAWF010b_weapon
110 MEDIUM_UNIT 2400 250 95 - - L 2

Dragon
185 ARMMINE2(Area) 2100 600(30) 200 - - L 10 5% edge effect

ADVSAM
204 SMALL_UNIT 850 200 75 - - B 2.8

ARM_MORTAR
207 MEDIUM_BUILDINGEX 600 100 105 - - L 1

dart
213 COMMANDER_BLAST 32700 9999 950 6000 600000 V 300 75% edge effect

Super-nuke?
214 CRAWL_BLAST 4000 2500 556 1300 52000 V 130 Medium-range Mini-
nukes?
(V= Vertical Launch)

These weapons will still retain their original ability as explosions, but
can also be used as weapons on 3rd party units.

ADDED 3do and sound files:

[ARM_MORTAR]
model=mortarshell;
soundstart=Mortar1;

[Dragon]
model=Dragon_miss;

[ADVSAM]
model=ADVSAM;
soundstart=launch;

[dart]
model=dart;

[TAWF010b_weapon]
model=rpack;
soundstart=shoot;

[CRAWL_BLAST]
model=advmiss;

After I add the appropriate sounds and 3do files to TA Bugfix, everything
needed to use these weapons has been included.

Admittedly, it may seem a little strange for a unit to fire SMALL_UNIT,
MEDIUM_UNIT, MEDIUM_BUILDINGEX, ARMMINE2, or CORMINE3. But confusion is
the price to pay for saving 7 weapons id's.

The 7 weapons conversions plus extra 3do and sound files adds less than
100kb to the total filesize.

Accumulating scars bug:

After many hours of battling on a map, many of the map features are either
removed or destroyed - such as trees or recycleable rocks - leaving behind
a "damaged terrain" scar. This is also true of dead units and dragon's
teeth which are recycled. The accumulation of many of these scars causes
some slowdown in the game. In the case of dragon's teeth, the slowdown
could well be excessive - plus revealing where dragon's teeth walls once
were to all players. Currently, I've left the other scars but removed the
"dead" dragon teeth scars.

Also, it was strange that although there is no way to destroy a scar - the
scar has a scar corpse as well! This unneccessary scar corpse has been
removed. ALL the remaining scars do NOT have a corpse.

Corpse Changes:

All corpses and heaps (in alphabetical order by unit abbreviation) are in
4 master files (Arm corpses, Arm heaps, Core corpses, Core heaps) -- this
would also aid in discovering unit conflicts. The other files are of
zero-length to force TA to forget all the incorrect and redundant entries
in ccdata.ccx and totala1.hpi.

FIXED: The Core Fortitude Missile Defense (CORFMD) incorrectly uses Arm's
Anti Missile Defense's (AMD's) corpse (armamd_dead) instead of its own
corpse (corfmd_dead) which is in TA. This isn't too big a deal, unless
you're using ressurrector units - in which case corpses don't always turn
back into the unit that they came from!

FIXED: The Core Goliath (CORGOL) uses the Core Diplomat's (corvroc_dead)
corpse. This was why previously a dead goliath was worth less metal than a
dead Reaper! This has been replaced by the considerably more valuable
goliath corpse (corgol_dead), which is also in the game.

FIXED: The Arm Retaliator nuke silo's corpse was worth almost 2,000 more
metal than it cost to build the silo. This has been change to about 800
metal -- roughly the same value as Core's nuke silo's corpse.

FIXED: The Arm Seer (ARMSEER) and the Core Informer (CORVRAD) used the
same corpse as the Arm Jammer, this has been changed to ARMSEER's corpse
and CORVRAD's corpse, respectfully.

Unit Footprints, Corpses, and Heaps have been changed so that they are the
same size, what few units this affects have had their corpses reduced by a
small amount. The only effect this may have on the game is slightly more
corpses can be packed into an area without overlap -- meaning that a few
extra corpses will be left behind after a battle that would otherwise have
been covered up and unreclaimable. (This makes the Core Necro and Arm FARK
more useful for when they go on ressurrection and reclaim patrols!)

Build Menu Changes:

Both Arm and Core's AWACs (Arm Eagle and Core Vulture) have been moved
from page 3, position 0 of the Adv. Air Plant to page 2, position 5. This
puts ALL Cavedog advanced aircraft on one build menu.

The Arm Panther has been moved from page 4, position 0 of the Arm Adv.
Vehicle plant to page 3, position 5. Previously, it was needlessly on a
menu page by itself.

Nuclear Mines (which can now be built underwater) have been added to the
Advanced Construction Sub build menu. (Page 3, position 5)

The Seaplane Platform is now buildable on the Advanced Construction
Aircraft build menu at Page 4, position 4. (This is the same build
position used by the Core Advanced Construction Kbot to build the Krogoth
Gantry, another Level 3 factory.) Because the Seaplane Platform is an
advanced factory that builds aircraft, some type of construction aircraft
should be able to build it. (This follows the general build rule that
advanced factories are built by less-advanced construction units of the
same type.) Since the Seaplane Platform is a Level 3 factory, the Advanced
Construction Aircraft (a Level 2 unit) should build it because the
Advanced Construction Aircraft is the only construction aircraft capable
of building Level 3 buildings.

Unit Name Changes:

The Decoy Commanders have been renamed "Commander" so you don't see "Decoy
Commander" when you move your cursor over top them in skirmish. You can
still use F1 to see a difference. I did not change the Commander build
cost to the same as the Decoy Commanders because of a gamecheat which
makes Commanders buildable - if Commanders cost no more than Decoy
Commanders, it would be more tempting to use that cheat.
The Core Mobile Artillery has been renamed "Pillager".
The Core Missile Frigate has been renamed "Hydra".
The Core Ressurrection Kbot has been renammed "Necro".

Unit Changes:

Both the downloadable=1; and the ovradjust=1; lines have been removed from
EVERY Cavedog unit in TA -- they do nothing so have no effect on the
game except possibly slowing it down a bit.

Land-based metal maker corpses have been made worth 1 metal so c-units on
patrol will automatically reclaim them if low on metal -- previously,
their wreckage would block passage but would never be automatically
reclaimed. 1 metal is a neglegible amount and not exploitable as a cheat
because the energy to metal conversion ratio of this "cheat" is nearly
700e to 1m! (Over 10 times worse than using an equivalent amount of energy
to power metal makers.)

The units Torpedo Seaplane/s (ARMSEAP and CORSEAP), Seaplane Fighter/s
(ARMSFIG and CORSFIG), Arm Escort (ARMSJAM), Core Phantom (CORSJAM), Core
Adv. Torpedo Launcher (CORATL), Core Leveler (CORLEVLR) all use:
ExplodeAs=MEDIUM_UNITEX;
But MEDIUM_UNITEX is a nonexistant weapon and does no damage to nearby
units when they die.
This has been changed to: ExplodeAs=BIG_UNITEX;
The replaced explosion does 1/5th the damage in nearly the same radius as
the self-destruct for the above units.

Arm's Moho Metal Maker (ARMMMKR) and Core's Moho Metal Maker (CORMMKR)
uses:
ExplodeAs=BIG_BUILDINGEX;
SelfDestructAs=BIG_BUILDING;

But both are nonexistant weapons and do no damage to nearby units when
they die.
(Because these units have nonexistant weapons for their explosions, a
weapon of the same name could be created and used to cheat!)
This has been changed to:
ExplodeAs=BIG_UNITEX;
SelfDestructAs=BIG_UNIT;

Core Toaster (CORTOAST): ExplodeAs=lARGE_BUILDINGEX;
(probably still works, but just to be safe...)

armthover.fbi typo:
ARMTHOVER has a brakerate of 0.0018, BUT CORTHOVER has a brakerate of
0.017!
Therefore, ARMTHOVER has a typo in it - an extra 0 that wasn't intended.

armaser.fbi typo:
ARMASER has a brakerate of 1, BUT the Core equivalent has a brakerate of
0.12!
Therefore, ARMASER almost certainly has a typo in it - so I reduced its
brakerate to 0.2!

The missions-only unit ARMSCORP has a goof-up in its FBI file:
ItalianDescription=;Scorpione
This has been changed to:
ItalianDescription=Scorpione;

The Arm Energy Storage has an error in its yardmap. It is a 4 x 4 unit
with a yardmap of:
YardMap=o;
instead of:
YardMap=oooooooooooooooo;
like Arm Metal Storage - which is also a 4 x 4 unit. This was a simple
cut-and-paste fix. ;)

Arm's Hawk's 2nd missile has an error in its data, it has:
weaponacceleration=13O;
instead of:
weaponacceleration=130;
(notice the "O" instead of a "0")
This has been corrected (but now only affects the old_weapons.ufo file.)

All the aircraft plants (basic and advanced) have had their yardmaps
changed so ground c-units don't block production as badly (but can still
occur!) while guarding them.

Individual unit _gadget.gaf build menu picture files have been added to
the Amins directory for many units that lacked them.
Cursor.gaf in the Amins directory now have a better unload animation.
(Thank BSR for this one!)
Help menu pictures (gotten by pressing F1 while the cursor is on them)
have been added to the Arm Scorpion, the Core Sea Serpent, and the Core
Hydration Plant.

Mobility changes on units:

The Arm Triton (ARMCROC) and Core Crock (CORSEAL) now has climbing ability
out of the water (maxslope=30) equal to their in-water climbing ability
(maxunderwaterslope=30) -- this is for metal maps like Over Crude Water,
where they would often get stuck going in and out of the water.

The Arm Zipper and Core Freaker now has climbing ability identical to most
other kbots. (maxslope=15) Previously they could climb only gentle slopes.

The Core Krogoth has been given climbing ability identical to the Arm
Bulldog tank. This will allow it to wade into shallow pools of water but
will not let it snorkle accross deep bodies of water like fully amphibous
units.

Fire Standing Orders and Fire Moving Orders for mobile units have been
changed so most mobile units are set to Fire at Will MOST of the time.

GAMEDATA dir (in REV31.GP3) file changes:
--

Category.tdf file has been altered to reflect the reduced number of
different Categories actually used in the game.

Help.TDF is the help file viewed from inside the game. Some of the new
commands added are now listed in the help menu. Page 3's last line should
tell if TA Bugfix is installed or not.

The LOS.TDF (the Line of Sight tables) file has been altered to include
entries out to 640 pixels -- so now far-seeing units such as the Leviathan
will reveal what is in the outer edges of their sight radius.

Meteor.tdf (in the Gamedata dir, NOT in the weapons dir) has been replaced
with modified meteor file. This is the data used when the +METEOR cheat is
used in skirmish.

Moveinfo.TDF contains the mobility attributes of all the units in the game.

The Sidedata.tdf file stores the ai's build menus, which has been
corrected. (See AI fixes section for more details.)

Sound.TDF stores the list of soundfiles used by various units. Some unused
entries have been deleted.

Weapons.tdf (in the Gamedata dir, NOT in the weapons dir) has been
replaced with a zero-length file to mask the one in the old Gamedata dir.

Unfinished work:

These are game bugs that I'd like to address/fix but do NOT know how.

1.AI antinukes that work in skirmish have not been made. I've made an
antinuke silo that doesn't use the stockpile=1; line in its weapon data
(it is NOT included in this patch), but it still seems to require the gui
file and the gaf file (for the antinuke missile itself). Also, the
antinuke must build 1 fake stockpiled antinuke missile (on the build menu)
before the antinuke will work - even though the stockpile=1; line is
missing. The fake stockpiled antinuke missile is never deducted when the
antinuke fires.

2.BURSTED BOMBER BUG: Bombers could not have their bombs converted to a
burst weapon -- to remove the long-string-of-bombs bug that is overused by
many players who think it's a legitimate tactic. Bombers are powerful
enough without this "tactic" especially when lag is affecting them. I'm
not talking about the multiple-targetting micromanagement strategy where
bombers are ordered to bomb another target downrange after their first --
this is little more than selecting multiple targets with shift except it
removes the "stupid" stage from bombers where they attempt to either stop
and land or fly in a straight line.

Bombers on patrol and fire at will, don't attack targets as they come into
the bombers maneuver range. The fix I tried never worked right.

3.The Doomsday Machine doesn't always point it's big-blue-laser turret in
the direction that the big-blue-laser fires..

4.I tried changing ALL landmines found in the game from yardmap=o; to
yardmap=y; - because even units that didn't know the mines were there
"knew" to drive around them. The reason I changed it back was because

yardmap=y; causes the landmines to be near-impossible to hit with laser
weapons. Only weapons which affect an area when they impact would be
likely to damage the mines.

5.The Arm Spider and Arm EMP Stunner Silo problem is that paralysis does
not act as a "STOP" command on units that are hit by them. And what's
worse, with micromanagement paralysis can be negated entirely on mobile
units. A fix for this requires an EXE change which I cannot do!

6.Also, the Core Leviathan may be partially stuck out of the water and
trackable like any other ship when it's in shallow water. This I have
confirmed but am unable to fix.

7.With the removal of the "commander" category in the ARMCOM.FBI and
CORCOM.FBI files, the Commanders are still selectable with CTRL+C, but
CTRL+C no longer centers the viewscreen on them. However, the viewscreen
can still be centered on them with the "T" key. Sometimes you don't want
the viewscreen centered on the commander when you use CTRL+C. It has since
turned out that the "commander" category in the ARMCOM.FBI and CORCOM.FBI
files has another use as well -- it prevents players from giving their
allies (or enemies) their commander in multiplayer games - especially
commander dies = ends games! Because this is an important limitation, I
had to add the "commander" category back to the ARMCOM.FBI and the
CORCOM.FBI files.

Map Tutorials

Terragen Map Tutorial

By Caer

OK, first off I want to make something clear - this is NOT a tutorial for
making tilesets with Terragen. It is a tutorial to make an entire map in
one go.

WHAT YOU WILL NEED
· The registered version of Terragen if you want to make maps bigger than
2x2. This is because the unregistered version only allows images up to
1280x960 to be rendered.
· Adobe Photoshop 4 or 5, Paint Shop Pro, or basically any image editor
that has crop, resize and reduce colour depth tools. Basic stuff, really.
Oh yeah - from now on, for simplicity's sake I'm going to say 'Photoshop'
when I actually mean any image editor that meets the requirements.
· The Total Annihilation colour palette, or the Photoshop .ACT file.
· Annihilator 1.5. It's so much better than TAE, you wouldn't believe it.
Besides, I don't think TAE lets you import an image to use as a map,
although I may be wrong. I've only used it about three times.
· A program to read Zip files, for example WinZip, for opening the
palette and World files for this tutorial.
· A lot of RAM - 128MB is the reccomended minimum, but you can get away
with less if you're prepared to sit around waiting for long periods of
time.

Now that's sorted, we can begin.

PART ONE - SETTING UP TERRAGEN
For this part, I'm going to asssume you have Terragen installed and at
least know the basics. If not, install it (duh), and go to the Terragen
website and look for some tutorials. The URL is
http://www.planetside.co.uk/terragen/. Alternatively, just have a mess
about with the various settings and see what happens - most of it is self-
explanatory.

The first step is to download and open the basic Terragen world file. This
is important, because it sets up the camera and sun position correctly. If
you don't want to download a 1.4K file, first turn off both 'Fixed height
above...' options, and use the following settings:

Position x: 128 y: -1265.337 z: 5200
Target x: 128 y: 128 z: 0

One thing that you must remember is that these are Terragen units, not
metres.

Zoom: maximum (32)

Sun
heading: 225
altitude: 30 - 50 (doesn't matter too much)

Disable 'Terrain casts shadows', too. Although shadows make the map look
nicer, it looks odd when units move into a 'shadow' area and don't get
darker. You may as well disable the 'Clouds cast shadows' option too,
although we won't be rendering the sky anyway. Another thing you should
consider for later is the shadow and ambient light setting - you don't
really want sunset-red shadows on a snow map, do you?

Lastly, you need to open the Atmosphere window and set the
'Density'/'Decay' sliders to minimum, otherwise it will look like your map
is being viewed from from 470,000 feet (which it is, actually).

Right then, now that we have that sorted, on to part 2.

PART TWO - DESIGNING YOUR MAP
This part can be a bit complicated, or not depending on how much work you
want to put in to your map. This is because it involves a fundamental part
of map design - terrain. You really should have an idea of what type of
map you want to make by now.

Basically, there are a number of ways to design a terrain:

· Using Terragen's various built-in generation tools
· Using an image editor
· Using another terrain generator, like Bryce
· A combination of the above

Personally I think Terragen generates very realistic terrain, although it
can be difficult to get what you want. This is where the import/export
option comes in - you can generate a terrain that kind of resembles what
you want, export it as a .RAW file, tweak it in Photoshop, then import it
back in to Terragen. Alternatively, you could sketch out a rough sample of
what you want in Photoshop, import it into Terragen and the generate a
terrain based on the existing one (look in the terrain generation dialog).

Before I go on, I had better explain the functions of the various controls
in the terrain generation dialog:

· Method: simply, what algorithm is used to generate the base terrain.
Try the different options, and see what happens.
· Action: easy - generate a brand new terrain, or base it on what you
have now?
· Status: well, er, it's kind of obvious what this is.
· Realism: kind of complicated. Basically it stops small bumps
interfering with the basic shape of the terrain. For example, try setting
it to zero and cick 'Generate'. You'll see a very rough looking terrain
with lots of variations in height and no real overall shape. Set it to
maximum and you get large hills with smoothish edges. This image should
explain things a bit:

The first image is with realism set very high.
· Smoothness: this controls how smooth edges are allowed to be. When set
to a low value, the resulting terrain has lots of sharp edges, making it
look kind of like folded paper. Set this high for nice rolling hills.
· Glaciation: easy one, this. It simply controls how flat the bottoms of
valleys are. When set quite high, you will end up with large flat areas
and steep mountain sides.
Here's an example of a terrain with the glaciation set quite high:

· Canyonism: another simple one, this controls how flat the tops of
mountains/hills are. When canyonism and glaciation are both set to
maximum, you get a kind of cliff effect.
· Size of features: pretty obvious - it controls how large your hills,
mountains and general landscape features are. One thing you must remember
is when you import a terrain, its vertical (altitude) constraints will be
from 0.25 to 63.75. This is too high, so adjust the range to go from 0 to
30 (using the 'Modify Terrain' button).

And that's that. Oh yeah, before I continue, I'd like to plug my Terrain
View program. Sorry. Terrain View 3D is a really simple program that lets
you open a .TER (terrain) file and preview it in 3D (surprise surprise).
You can view it with lighting, or using the heightmap as a 'texture', or
you can see a wireframe view, and you can even adjust the water level! Get

it from the Delphi Programs section of my website:
http://caer.cjb.net/delphi/delphi.html

The next stage in desinging your map is to decide what it will actually
look like: will it be a snowy wasteland, lush green fields, barren desert,
bright red and blue DRUHgland (;o)), or something else? This is where
the surface map editor comes in.

Terragen has a very powerful surface map editor that can create very
realistic-looking ground (or not, if you so desire). The surface map is
represented by a tree control, and the top layer is the parent surface.
This parent surface can not be removed, as it makes up the base of your
terrain. Without it, you would not see any terrain at all.
Under that you add child surfaces, which in turn can have child surfaces.
Surfaces lower down on the tree get rendered on top of ones above, so if
you have a 'grass' layer, then a 'snow' layer lower down, the snow will be
rendered on top of the grass (as it should be).

The key part fo the surface map bit is the editor. Click the Edit button
and you are presented with a whole host of distribution options (you may
have to click the 'Advanced Distribution' tab first). Most of these are
pretty self-explanatory, although one or two may need explaining. These
are:

· Depth/scale: this controls the 'size' of the surface. In other words,
setting it really low would produce a surface that appeared in small
patches on the the terrain, while setting it high would make it appear in
large areas.
· Sharpness: these sliders affect how sharp the boundary between one
constraint and the other is. For example, setting the max altitude
sharpness very high would produce a surface that would go all the way up
to the specified altitude and stop very quickly. This sort of effect could
be used to create a waterline, for example. Oh, and I reccomend you give
each surface its own name, otherwise you'll be left with a whole lot of
layers called '[New Surface]'

At this point you may be asking 'how do I make a surface use custom
textures?'. The answer is you need a (free) plugin, called SoPack, by Sean
O'Malley. You can get this plugin from http://www.geocities.com/~ffrog. It
allows you, among other things, to create a surface that uses a texture
map of your choosing, and use a greyscale image to control the
distribution of a surface. So, if you wanted to create your very own
custom Core Prime map, you could make a texture from a screenshot of
something, and set it to repeat over the whole terrain. Voila - instant
metal! Take a look at the SoPack documentation for more details.

If you really can't be bothered making your own surfaces, Terragen comes
with a selection of ready-made ones that look pretty good.

Another thing you may be asking is 'what about water?'. Well, water can
either be really simple, or not quite as simple (and a bit more time-
consuming).
The easy way to make water is using Terragen's built-in water, and SoPack
to get the transparency effect. Unfotunately, this method results in water
that doesn't look that nice at all.

http://www.geocities.com/~ffrog
http://caer.cjb.net/delphi/delphi.html

The alternative is to use a bit sleight-of-hand and use surface maps that
look like water.
To do this, add two child surfaces to the main surface. Select the first
one, and open the surface editor. Rename this surface to something like
'Deep Water'. Now, change its colour to a nice dark blue, so it looks like
deep water, and set its bumpiness pretty low. Next, adjust the settings so
they look like this:

Note that the maximum altitude setting is scaled to the 0 - 30 range of
the terrain. The range TA uses is 0 - 255, so you will have to adjust the
desired level to fit in the 0 - 30 range.

Next, select the other new surface and call it 'Shallow Water', then
adjust its settings like this:

This will create the appearance of shallow water near the shore - you
should adjust the colour to look like your base surface with water on top
of it.

When you render, you should end up with something looking like this:

If you want to be really clever, you could render two images - one with
SoPack-water and one without, then combine them in Photoshop. You'll need
a lot of patience for this though, as working with huge images will be
very slow.

Now, although the image above is a pretty good approximation, it can be
improved. This can be achieved even without the aid of SoPack - first,
save your current World file, as we'll be making some pretty drastic
changes now.
Once that's done, make a note of the maximum height of the water - you'll
need this value later. Next, delete all child surfaces, leaving just the
main one. Click on it, and then click the edit button. When the editor
appears, set the surface's colour to pure white, bumpiness to zero, and
coverage to maximum (i.e. with no height/slope constraints - the surface
should cover the entire terrain). The next step is to add a single child
surface, and make it pure black, again with no bumps. With this surface,
set the coverage to full and with no slope contraints, but with the
maximum altitude set to the desired water altitude, with sharpness set to
maximum.

Next, you need to open the Sun control window, and set the sun altitude to
-90. In other words, the sun must be pointing straigt up, underneath the
terrain, like this:

Now, click the 'Background Light' tab, and set the shadow lightness to
100, and the shadow colour to white. Make sure the 'Single Colour Shadow
Lighting' option is selected.

Now, when you render your image (at the same size as the original), you
should end up with something like this:

Save this image as 'watermask.bmp' - you'll need it later.

That's as much as can be done at the moment regarding map design. Now all
you have to do is decide how big your map should be. The map size is based
on how big you render your image, but you must make sure the width and
height are in a 4:3 ratio. In other words, the width must be 1.33333 × the
height. If it isn't, the rendered image will have bits missing, making
lining up the heightmap a real hassle.

Make sure the 'Detail' slider is set all the way to the right, unless you
want a very pixelly map, the click 'Render Image'. And wait. Depending on
the size of the map and how many surface layers you have, and the speed of
your computer etc. etc., this can easily take 6 hours or more. For the
record, my Mallodden Plain map took 26 hours to render on my ancient P133.

Once the image has been rendered, you can save it. This is annoying, as
I'd much prefer it if you could specify a filename beforehand and render
directly to the file. I should warn you that for a 12x11 map, you will
need approximately 400MB of free space to account for the swap file and
actual image. A 6400x4800 24-bit bitmap takes up 88MB! This is where
having the odd half-gigabyte of memory comes in handy (I only have 64MB).

PART THREE - MAKING IT A MAP
Now that you have your enormous bitmap (or two, if you're going to include
water), you need to open it in Photoshop.
You can skip the next two paragraphs if you aren't going to have water in
your map.

Select the 'water mask' image. Before we can do anything with the image,
it should be converted to Bitmap mode (2 colour), to speed up processing
and save memory (24x less memory needed!). Once that's done, copy the
entire image to the clipboard.

Next select the main image, add a new layer above the background, and fill
it with a colour that sort of matches the basic 'water' colour. Making
sure the new layer is selected, go to the Layer menu and add a layer mask.
Open the Channles tool palette, and paste the clipboard (which contains
the water mask) in to the layer mask 'channel'.

You will then end up with a new layer that covers only the 'water',
although at the moment it looks a bit nasty. To fix this you need to
adjust the overall transparency of the layer - around 40% looks quite
good. To further improve the effect, you could try adding noise, then
blurring it, or create a wave effect using the 'Lighting Conditions'
filter. Another thing you can do is use the 'water mask' to create a
selection, then use this to apply a Gaussian blur with a level of around
0.8 to the main image, to blur the underwater areas a bit. You could also
try blurring the mask for the water layer slightly. Finally, you may need
to adjust the colour of the water, as you may not get the results you

expect. In the end, you should have an image which looks like this:

You can now crop away the black areas. HOWEVER, there is a particular
method to this, which is best explained by this image:

Now you can reduce the colour depth of the image, using the TA palette
(you need to flatten the layers first though - you may want to save a
backup .PSD file at this point). You must remember to use the 'dither'
method, otherwise Photoshop will match each colour to its nearest
corresponding colour in the TA palette, resulting in a hideous mess of a
map. This reduction in colour depth will also take quite a while (35
minutes on my P133. Yes, I enjoy moaning about my computer's speed, or
lack of it). Now save the bitmap.

Next you need to export the terrain as a .RAW file in Terragen, then open
it in Photoshop. You will also need to flip it vertically, because
Terragen writes the file backwards. There's probably a good reason for
this.

Once you have opened the heightmap, you need to crop it according to how
much was cut off the main image. The reference used to crop the heightmap
must be based on a 'low' part of the main image (like the bottom of the
sea). This should explain it better:

Of course, on a larger main image you will be cropping off quite a large
number of pixels, but you must still crop the same amount from the
heightmap, i.e. just because you're cropping a large amount from the main
image, it doesn't mean you should crop a larger amount from the heightmap.
If you zoom out from the main image, and crop at a low zoom level (like
16%), it will be easier to judge.

Once this is done, you need to resize the heightmap so it is 1/16th the
width of the main image, and (1/16th) + 8 the height of the main image.
For example, if the main image was 512x512, the heightmap would be 32x40.
Now you need to crop the image so the height is 1/16 the height of main
image; in other words cut off the bottom 4 rows. The reason for doing this
is that Annhilator (and maybe TAE) cut off the bottom part of the main
image, so the heightmap doesn't have to go all the way to the bottom.
That's not a very good explanation, but it's the best I can think of.
Sorry. Once you're done resizing and cropping, make sure the heightmap is
in greyscale mode, and save it as a .BMP (Windows bitmap) file, called
heightmap.bmp or something.

Now comes the awkward(ish) bit - importing into Annihilator. First,
obviously, you need to load Annihilator. Next, click the 'New' button,
then click the 'Bitmap' tab. Enter the filenames as appropriate, or use
the '...' buttons, then click OK. Again depending on the size of your map,
the speed of your computer, the amount of memory in it, and the phase of
the moon, this may take a while.

When Annihilator has imported your map, the first thing you should do, if

your map has no water present, is click the 'Height Editing' button (),
and move the 'Sea level' slider all the way to the left. Now, switch on
the contour map (the button), and check the contours match the terrain. If
everything has gone right, they will. If not, things can get sticky. If
the countours appear mis-aligned, it may simply be a case of re-opening
the .RAW heightmap (the original), and then resizing and cropping it
slightly differently. Because of a bug in Annihilator, you will not be
able to save the new version of the heightmap over the old one, so you'll
have to call it 'heightmap2.bmp' or something. If things continue to not
look right, you may well end up with 4 or 5 different heightmap bitmaps.

If you have decided to include water in your map, you should simply adjust
the Sea Level slider until the red contour line matches the shoreline on
your map image.

Once you have the heightmap/contour bit sorted out, it's time to set the
map settings. This is up to you, and beyond the scope of this tutorial.
Once you've done that, you need to save your map and close it, because
Annihilator won't let you place any features on your new map yet.

Next just re-open the map, and start placing features!

Creating Custom Tilesets

By C_A_P

• This tutorial will walk you through , step by step , my technique
for creating unique tilesets for TA maps. You will need the
following tools to use this torial to the fullest:

• PhotoShop 4.0
• Eyecandy (plug-in for PhotoShop)
• Paint Shop Pro
• TABuilder
• Annihilator .21

Create a concept

1. Its always a good idea to draw a simple concept of you map first,
before you delve into the graphics. A program such as PAINT will do
the job just fine.

2. The map we will be designing will be very small, but enough to get
you started.

3. The following is a very simple concept sketch I whipped up in PAINT
in about 1 min.

4. Now that we have our basic concept, we can begin with creating the
graphics.

Design Your Texture and create a template.

1. There are a couple of things you will want to keep in mind while
designing your texture. The most important, is that you want it to
be tilable, and seamless. Also, with the current version of
Annihilator, you cannot import a .bmp that is larger than 512 x 768
in size. This will create a nice 24 x 16 section .

2. So, lets get started. You will want to create a template first.You
can experiment here with your own ideas, or use the one that came
with this tutorial. (template.bmp). You will want to keep this
template at 512 x 768 in pixel size. So fire up PhotoShop, or your
favorite paint program.

You will understand where im going with this concept as we progress.

This is the main texture of our little map. We will use this section to spawn other
sections.

3. Now that we have our basic texture done , save this as template.bmp.
This will be the template that we use to create the terrain
features.

Create the Terrain Features
Create a simple platform

1. We will use our template file as a base for all of our terrain
features. The first feature will be just a simple small hill. Open
the template.bmp file in PhotoShop and select an area. I've just
selected a square area to create a very simple platform.

2. Under the filters menu in PhotoShop, select Eyecandy and then Outer
Bevel.

3. These are the settings I used to create the simple platform

• Bevel Width: 54
• Shape: Flat
• Smoothness: 8
• Shadow Depth: 83
• Highlight Brightness: 44
• Highlight Sharpness: 24
• Lighting Direction: 128
• Lighting Inclination: 73

A nice simple little platform that looks fairly convincing

1. You will actually want to perform the above procedure TWICE. The
second time, change the lighting direction parameter to 330.
Experiment around with the settings a bit to suit your fancy.

2. Voila!! We have just created our first simple platform, and it
doesn't look too shabby. Save this as plat1.bmp

Create A Pool of water
Now we will create a little pool of water.

1. Start by opening up the template.bmp file in PhotoShop again. (see
where im going with the template thing....this retains the
tileability of each section)

2. Make a nice jaggedly, rounded selection

3. Now go to the selection menu and choose invert from the menu.
4. Go to Filters, select Eyecandy and choose Outer Bevel again.

Settings for the tutorial are as follows:

• Bevel Width: 45
• Bevel Shape: Rounded
• Smoothness: 8
• Shadow Depth: 83
• Highlight Brightens: 44
• Highlight Sharpness: 24
• Lighting Direction: 128
• Lighting Inclination: 73

1. Again, you will want to repeat this process twice, changing the
lighting direction from around 128 to about 330. Play around with
these settings to get the 3D effect looking nice....

 So far, it should look something like the picture below

2. Now, go back to the selection menu and choose invert again. Now
choose contract and enter 15 as the value. Your selection should be
right in the middle of slope, making a nice level for some cool
looking rusy water texture.

Create the acid

Now that we have our selection, its time to create the acid texture, so it
looks like our little crevice is filled with some kind of corrosive
substance.

1. Ok, now for some cool looking corrosive goo to go with our texture.
For this tutorial we'll go with an almost lava type texture that
looks very nasty.....

2. Click on the Foreground color and make it solid black.
3. Click on the Background color and change the RGB values to:

• Red: 190
• Green:48
• Blue: 25

1. Now select Filter and then Render and then Clouds
2. It should look something like the picture below:

3. Lets add a little texture to the liquid . Select Filter then
Eyecandy and Glass

4. I used the following settings, but feel free to experiment:

• Bevel width: 9
• Bevel Shape: Button
• Flaw Spacing: 7
• Flaw Thickness: 18
• Opacity: 75
• Refraction: 46
• Glass Color (Solid White)
• Highlight Brightness: 0
• Highlight Sharpness: 22
• Lighting Direction: 135
• Inclination 85

Now save this as Acidpool.bmp and we're ready to move on to the next
section.

Create a River of Acid
This will walk you through creating a river of acid, using two sections.

While creating my maps, I ran into an annoying bug in the current version
of Annihilator (.21). If I tried to import AND place a bitmap as a section
that was larger than 512 x 768 I got a script9 error. So ... I used the
following method to create larger sections....

1. Start again, by opening up the template.bmp texture in PhotoShop. Go
to Select and choose all

2. Then go to the edit menu and choose copy
3. Now go to Image and select Canvas Size
4. Orient to the top left, and resize it to 1536 x 768
5. Now you should see something like the following picture

6. Now go to the edit menu and choose paste
7. Zoom in nice and tight and align the pasted portion exactly with the

other side.

8. Now select a river looking area and perform the same operations as
you did with the acid pool. When you are done, you should come up
with something that looks something like the picture below:

9. Save this as river.bmp and lets move on.
10. Now to work around that bug that lurks in Annihilator
11. We have to split the river in half, each as their own section.

To do this, go to Canvas Size and orient the picture top left and
change the size to 768 x 512. You will get a warning that the image
will be clipped. Don’t worry, this is what we want!!!

12. Save this as River-l.bmp
13. Open River.bmp again. Do the same thing, except align right

before you resize it. Save this as river-r.bmp
14. You should have 2 sections like the ones below:

Converting the sections to the TA color palette
The last portion of the graphics tutorial is converting these to the TA
color palette so that they can be imported as sections in Annihilator.

1. I have included the TA palette for Paint Shop Pro in this tutorial.
Open each of the bitmaps (except for River.bmp) in Paint Shop Pro

2. select 1 of the images and choose color and load palette (make sure
you have error diffusion turned on), select TA.pal and re-save it.

3. Do this for each of the sections; template.bmp , plat1.bmp,
acidpool.bmp, river-l.bmp, and river-r.bmp

Importing the bitmaps

1. In the last step of Part 1, we converted the bitmaps to the TA color
palette. We will now import those bitmaps into Annihilator .21 as
sections. So, fire up Annihilator and lets get goin....

2. Click on file and then new map and lets create a simple map to place
our sections on. Select Tiles tab and choose tutorial.tnt for both
the TILES and ANIMATIONS values. Leave the default height at 75 and
sea level at 50. Map size of 100 x 100 is fine. Enter whatever you
desire as map description and mission description.

3. Go to Sections and choose Load BMP as Section
4. Now go to the directory that contains the bitmaps and select

template.bmp and click OK. Notice how it appears on the right side
as a 16 x 24 section. Repeat this process for each of the bitmaps.
When you're done it should look like this

5. At this point, it's a good idea to save these off as a section. Do
this by selecting sections then save sections and choose a name and
location. These sections are included with this tutorial.Get them
Here.

6. Now, click on the height button to disable it, and place the first
one on the map about 3 tiles down from the top and 1 or 2 tiles in
from the left. This will make more sense later....

7. Repeat the process, separating each section by 1 or 2 tiles. When
your done, your map should look something like this. This will make
more sense as we go on...

Ok, now its time to do the fun stuff like height editing and creating the terrain
archives

Editing Height
This will walk you through editing height and saving a terrain archive so
we can create our map

1. OK. Now that the easy part is over, lets move on to the more time
consuming part of making maps. Height editing. Switch to height
mode..

2. Ok, the template is for the most part finished already, it will be a
flat section of ground, so we will leave that piece alone.

3. Lets move on to the section that has the platform. For this
tutorial, we will make the platform tall enough to give it some
advantage, but not steep enough so that units cant get up the sides.
So we want all units to be able to get up the sides and onto the
platforms,since it doesn't LOOK to be very tall.

4. In the Height Interval section, press the spinner until its value is
5

5. So now we have to edit the height to make it appear as though it
matches the graphics. Ok..lets start at the top left. Just at the
base of the platform click once with your LMB.You will see a little
portion go up at a slight angle. Move the pointer to the right a
hair and click the RMB again. You will see it start to pull up the
line at the bottom of the platform. Get into this rhythm..move
click....move click....move click....should look like this when your
done.

6. Ok. You can probably tell that this is going to take some time. Next
step is to move up to the next line and start again. This time click
the LMB 3x so it creates a nice even slope. You might find it easier
to adjust the height to 15 units here, so you don't have to click 3x
each time. When you're done, it should look like this...;

7. Now we want to create the next one. Increase your height interval to
15 this time and click on the next line up and do the
move..click....move thing. Now we want to smooth out the edges a
bit, so adjust your height interval back to 5 and go along the edge
to make a nice smooth slopeit should look like this.

8. Ok. Now adjust your height interval up to 50 and increase the
aperture area up to 5.To save some time, we are going to raise the
platform up to its full height 125 and worry about the edges
afterwards. So, move the aperture to the edge of the platform and
click. You should notice that a much larger section moves up this
time....do this until the majority of the platform is raised. It
should look something like this when your done...

9. Ok. Now finish it by going around the edges and making a nice slope
on all 4 sides. Spend some time to make it nice and tight around the
edges. The ground should be at 75 and the top of the platform should
be 125.

10. Time to move on to the acid pool next...save your work at this
point either as a .tnt file or as a .ann file.

Finishing Touches

• When editing sections that contain parts that are going to be below
sea level, its important to know what you want your map to behave
like. The TA engine is limited in what it can do. You cannot have
one part of it be 'lava' and another part be 'water'. For the
purposes of this tutorial, I've elected to make the acid pool just
shallow enough for the units to easily enter in and cross, but not
deep enough to allow a shipyard to be built. And for an added twist,
since im sure most of you have TA:CC by now, I will show you how to
make these sections cause damage to the vehicles that enter them....

1. Start by entering height editing mode and changing the height
interval to 15. Click around the edges of the pool ONCE. This will
create a nice lip around the rim that the units will have no problem
going over. Once you have the whole rim created, change the height
interval to 30 and click just inside the first area you did. You
will notice the lines starting to turn blue at this point. This is
because the height has fallen below sea level (should be at 45, and
sea level is at 50). This is just deep enough to make our acid pool
do its job. Finish it up, and it should look like this when its
completed...again..save your work as you go along!!!

2. Now move on to the Left and Right river sections. By now you should
have a decent understanding of how height editing works in
Annihilator .21. The two sections , when finished should look like
the pictures below. Once all your sections have been edited to your
satisfaction for height, its time to move on to the next thing…

Now its time to create a Terrain Archive and make your map!
Our little map is coming along nicely, we have all of our pieces created,
now its time to put them to use!. To make the job of making a map easier,
we should create a Terrain Archive. This isn't NECESSARY, but makes it
easier. It also enables you to be able to distribute your tileset to other
mapmakers in the TA community.

1. Press the button that looks like three dots. This will create a new,
blank selection palette. Highlight the word default and press
backspace enough times to clear the word and replace it with
Tutorial

2. Position your cursor on the top left side of the template section.
Press and hold down the RMB and drag a rubber band around the
section. MAKE SURE you select only the section. It should be exactly

24 x 16. Let go of the mouse button and the selection will remain.
Press crtl+c to copy the selection, with its newly created height
info , to the selection palette.

3. Repeat this process until you have all the sections re-copied over
with their new height info.

4. Go to the sections menu and choose export terrain archive. The
following window will come up.

5. Check the tutorial box, so that it will only export the selection
palette that includes the height

• Give it a name
• Give it a description
• Give it a Type
• Leave the sea level at 50 for this
• Press the land tiles button and choose 1 or 2 tiles for land
• Press the water tiles button and select 1 or 2 tiles for water
• Press OK (don't worry about the edit anim list one for now)
• Done, now we just have to study our original design and decide how

to make the pieces fit...

Make your Map
Now its time to put it all together.

1. The first thing to do is press file and new map and it will open the
following dialog.

2. Enter in whatever information you'd like, but the width and height
should be kept the same for the purposes of this tutorial. And of
course, the locations of various files will be different. Press OK
and give it a few seconds....and presto! You should have a fairly
nasty looking map with all your sections, including height values,
on the right hand side.

3. Now, begin to place each section, starting from the top left.
4. Place the Platform section in the very top left. Place a ground

section to the left of the platform. Then one more ground section,
then another Platform section. It should look like this so far....
(minimap view). Notice how it all fits together seamlessly...

1. Now, just work your way down the map. The next row goes like: Acid
pool, ground , ground, Acid pool.

2. The next row is: ground, river left, river right, ground.
3. The next row is: Acid pool, ground, ground, Acid pool.
4. The last section is: platform, ground, ground, platform. Voila!! Our

map is nearly complete! It should look like this:

• Ok!! We have created a reasonable facsimile of our original concept
drawing in tutorial 1. (Notice I added some extra acid pools that
weren't in the concept map).

• Now, all we have to do is place the starting points, features, and
set the map properties, and we're ready to test it out!

• I will let you dictate where you want the features to be placed, and
the starting points.

• Now, save the map as a .tnt file. It will also create a .ota file
that contains all the various settings of your map. We will want to
open this .ota file in a program such as notepad. Add these two
lines in the section that reads [GlobalHeader]

o waterdoesdamage=1;
o waterdamage=100;

This will make it so that when the units go through our little 'acid'
pools, they will be hurt....badly. You might want to adjust this to a
lower setting, but I think its funny to send a few flashes through the
acid and watch it smoke and blow up in a few seconds....

It should look like this:

AI TWEAKING GUIDE

BY Switeck

What is the ai?

AI stands for artificial intelligence. It refers to the computer-
controlled players in skimish games AND multiplayer games with computer
players added.

Cavedog's ai, and its problems:

"From time to time, people complain about the weather. But no one ever
does a darned thing about it." -- Mark Twain

The ai in Total Annihilation was quite dismal in versions 1.0 and 1.1, and
only slightly better in v1.2b1. With the v2.0b1 patch, the ai was improved
but still not much of a threat in a 1 vs 1 ai game against a good player.
Cavedog has considered improving the ai to be a low-priority goal in
patches, and it's looking like the v2.0b1 patch may be the best ai that
cavedog makes.

In the earlier ai's (before v2.0b1), what made the ai dismal was that it
was limited to only 5 factories and 6 construction units. It poorly
managed its resources and was often unable to constantly run even that
pathetic amount of production. It would try to attack with ground units on
a sea/island map. Or it'd build metal makers on all-metal maps. Or fill
its base up with crawling bombs that never moved.

In later versions the ai was not quite so bad, but still shared many of
the same problems. With v2.0b1, it looked like Cavedog *almost* knew what
they was doing. Finally they'd made an ai that could build a huge base in
a reasonable amount of time AND build a large attacking force. No longer
did it build many of the absolutely useless units like lots of radars and
crawling bombs. I even lost a game to it on Metal Heck while playing with
2 people vs 3 ai's over the internet.

Despite its many improvements, the v2.0b1 patch added NEW problems to the
ai. Since that patch allowed cavedog's add-on units (and even 3rd party
units) to be used by the ai, the ai would build many of the new units
without limit. Although this was ok with units such as the Core Sumo, this
was worthless with the Arm Marky - causing the area around the advanced k-
bot labs to become so crowded that the labs could no longer make any more
units. With the fixed base units, this was even worse: The ai didn't know
when to quit building naval metal makers, naval missile towers, and naval
laser towers.

Cavedog's built-in AI is simply shameful in v3.0 and v3.1 of TA:CC. One
would expect that with each patch to the game that the ai would slowly get
better. But the ai went from decent in v2.0 to terrible in v3.0 and almost
as awful in v3.1. The v3.0 patch was the first patch to use Core
Contingency which introduced many new units into the game that were
specialty units that were almost all unuseable by the ai.

A major complaint of the ai in v3.0 and v3.1 is that it builds a base and
lots of construction units but very few attackers. It's like the ai wants
to play a game of sim-city instead of a wargame. With the addition of
TA:CC, all the new units that CAN be built tend to "water down" the ai. A
BIG problem is the unit count, with 70+ new units it is impossible for the
ai to build a reasonable number of any particular unit.

General problems with all the ai's made by Cavedog:
--

All the ai versions would (on very rare occassion) build a nuke silo or an
antinuke silo. But never would a nuke be fired nor would the antinukes
shoot down nukes shot in its direction. A hacked unit that acts SIMILAR to
the real unit is required for the ai to actually shoot nukes and possibly
antinukes.

The AI plays the map, not the other player. Metal spots (mostly) determine
where it builds metal extractors and thermal vents are where it sometimes
gets sane and builds a geothermal plant. Its base ends up being built
around whatever features are on the map, with no consideration for where
its enemy/s are. It doesn't consider what the player is doing to decide
what to build next. It looks for the nearest enemy unit to its attack
force, that's almost all it knows to do about the enemy player. If you do
something unexpected, it falls apart. (The "Solitaire" bug or "Sim-City"
bug)

All the ai versions also have their attacking ground units "sleep" after
destroying all nearby targets. The ground units quit moving for a couple
of seconds, making them easy pickings for things like guardians. In my
opinion, this is probably the ai's BIGGEST weakness - but it is one that
is unchangeable by ai profiles. (The "Coffee Break" bug. Maybe it's a
union thing...)

All the ai versions would have their ground forces concentrate their
firepower on 1 unit. Often, the ai ends up shooting at resources (like a
closed solar, which takes quite a lot of damage to kill) while nearby base
defenses pound away on them. (The "Tunnel-vision"/"Target Fixation" bug)

Sometimes, because of the terrain or DT, the unit the ai is trying to
destroy cannot be hit - but the ai doesn't quit trying to kill it. A good
example of that is when peepers are landed in the middle of the square
columns on Metal Heck before the ai's ground force arrives. Until a Merl
or similar unit that can shoot over hills arrives, the peeper is
reasonably safe. Another good example is a sub close to the shore of the
enemy base - ground units will wade into the shallow water trying to get
to the sub, but that only makes them vulnerable to torpedoes. (The "Why
won't it die?" bug)

If the unit the ai is trying to destroy runs away, the ai's ground forces
will chase that 1 unit around the map until it either gets destroyed or it
gets about 2 screen lengths away from the ground force. Note: flash tanks
are really good for doing this. (The "Pied-Piper" bug)

Any of the ai's units that are not already shooting at something sometimes
fire on whatever enemy unit gets into their range. (The "Free Will" bug)
Whoops! Maybe that's not a bug. Probably good the game has that bug! ;)

If a friendly unit is near where another friendly's weapon hits, they
often take spash damage. Although this is not a bug in itself, the ai
doesn't try to stay out of the line-of-fire. Construction units are
especially bad about this - maybe they're suicidal... (The "Friendly Fire"
bug)

If the ai's commander is damaged, it stops where it is for up to 15
seconds. This makes it very likely to be hit again, since it's not trying
to get away. Worse still, if the ai's commander is being hit very quickly
over and over again by multiple units, it doesn't even shoot its wimpy
laser at the target it just twitches until it's no longer being fired at
or (more likely) it dies. 3 flash tanks shooting the ai's commander at one
time are good at making it wiggle helplessly till it dies. (This is just a
"Gone Stupid" bug.)

After many attacks and retreats, the ai's ground force gets smaller and
smaller. Makes you wonder if the ai is becomming pacifistic. This ussually
happens after the ai's base has been left alone and it's had hours to
build up without its base getting bombed. This is because the ai is at or
near the unit max. The lower the unit max, the worse this problem gets and
the quicker it occurs. The ai doesn't avoid building a base containing so
many base buildings that it cannot build any ground forces - this is
because the ai doesn't know what the unit max is! It could be only 100
units max, and the ai will still try to build a large base. ("Make peace
not war" bug.)

Massed aircraft are considered by many to be the most powerful attacking
force in the game, yet rarely does the ai have even 3 aircraft working

together. The ai's aircraft wander alone randomly around the map. Only if
the aircraft stumble accross an undefended unit are they likely to
successfully destroy it and survive. Never is more than a modest air
defense needed to prevent the ai's airforce from destroying a base.

The ai doesn't build ENOUGH resources quickly enough to keep up with its
rate of consumption - often it has few solars and metal extractors to run
3 or more factories and 8 construction units.

A key AI problem is that some units aren't useful to the ai. The ai will
build multiple radars right next to each other, or build metal makers when
out of both metal AND energy. This compounds the ai's weakness in
resource-gathering ability - already LOW on resources, the ai generally
wastes what it does have on units that it doesn't know how to use.

But that can be changed!

Without modifying Total Annihilation (other than OFFICIAL game patches),
if you wanted the ai to give you a good fight in a skirmish game, you
either have to take on 3 ai's vs you (or worse odds) or restrict yourself
to give the ai a chance (no nukes, berthas, dragons teeth, aircraft, etc,
etc).

Now, there's an alternative: because Cavedog made TA easy to be changed
and added to, the ai can be changed as well! In the absence of an offical
Cavedog fix to the Ai problems, we can design our own AI profiles which
influences many things that the computer does. Just by eliminating the
useless units (to the ai only!) the ai can be improved over what Cavedog
has made. And by balancing the useful but expensive units, the ai can be
made even better.

I've discovered that almost every time I eliminate units so the ai no
longer builds them, the ai generally gets better. Or, if I add in whole
groups of units the ai tends to become slower in attacking and base-
building.

My ai profiles attempt to fix the problem by changing what the ai can
build and how often it can build it. This doesn't permanently modify the
game but it does fix some of ai problems in the game. The patch is totally
compatible with TA, and can be used in multiplayer games. What's more, if
you put an ai into the multiplayer game it is controlled by YOUR ai
profiles, not the host computer's! What this means is your ai may be
better than anyone else's in the game.

My ai patch tries to fix the problems not caused by the underlying ai
engine hard-coded into the EXE. There are still problems in the game that
prevent the ai from playing a good game EVERY time it plays, like when it
builds its vehicle plants with the exits blocked by walls - because the ai
engine controls WHERE it builds, my ai profiles only control WHAT it
builds. I do not claim my ai is unbeatable, but players will find skirmish
games against the ai more of a challenge.

What are ai's and Where do I put them?

The ai's are simple text files that can be viewed and edited with almost
any word processor, including Wordpad and Notpad. All the ai's go in the

AI directory under TOTALA. If the standard install for TA was done, all
the ai files are in the C:\Cavedog\Totala\Ai directory. Cavedog DOES NOT
create this directory for you nor will there be any ai files in it unless
you place them there, this is the directory you have to create to change
the ai.

In the (unlikely) event you wanted to remove the ai profiles so the game
uses the original built-in ai profiles, either delete the files in the \Ai
directory *or* rename them or move them to another directory.

How does the computer know which ai profile to use?
--

The map files themselves determine which ai profile that the computer will
use on each map. This is a single line in the OTA file of the map:
aiprofile=default;

Note: if the maps are stored in UFO file format (or even HPI or CCX), they
still contain OTA files. The only difference is that the OTA files are
compressed inside the UFO file.

In TA:CC there are many standard ai profiles that a map author can use for
their maps: Acid, AirBattle, Default, Hover, Krogoth, Metal, Missions,
SeaBattle, Urban, and Waterwrld. All are ordinary text files that contain
what the ai is allowed to build for those map settings. Most maps will
work ok with one of the above ai profiles, but putting in the wrong one
can be worse than none at all.

There's nothing worse for the ai than being told that the map is a green
land map (DEFAULT.TXT) in the OTA file when there's water on it and it
should probably use AirBattle or SeaBattle ai file instead. Trying to
flash-rush from one island to another just doesn't work. ;)

ANY map can benifit from an ai profile designed specifically for it or
for its type (water/land/metal/wind). A few maps need something more for
the ai to attack before the 30 minute mark - that's where a modified ai is
really needed!

How do I change the ai?

The ai text files use simple commands to tell the ai what it can and
cannot build. Most such commands only affect 1 specific unit, but there
are a few universal values that can be used to affect groups of similar
units or units all on one side. Sadly, the universal values aren't as
useful as they might seem - because they often affect TOO much.

Units are refered to by abbreviations made by Cavedog or 3rd party
unitmakers. A table of all the units and abbreviations is a good thing to
have to figure out what an abbreviation is for a certain unit or vice
versa. The abbreviation's first 3 letters almost always (except in the
case of a few 3rd party units) tell which side the unit is made by -
either ARM or COR. And the total length of the unit abbrieviation is 8
letters. Ussually, the name of the unit becomes the abbreviation for the
unit - such as ARMFLASH or CORCAN. Other times, the abbreviation comes
from the unit's function such as ARMHLT (the Sentinel laser turret). The
rest of the time, you just have to wonder what the people at Cavedog were
smoking: ARMCROC (I thought Crocs were Core units!), ARMTHOVR (a throw-

over?), CORAPE (Core can build apes?), CORGATOR (sounds amphibious?),
CORSEAL (I assume this is a naval unit?), CORSS (nazis?), CORTHOVR
(whatever it is, Core's got one too!), CORUWMEX (underwear mexico?),
CORVROC (well, roc is a mythological flying bird so this is some kind of
flying unit?), CORWIN (but not CORLOSE?).

Limit tells how many of a particular unit to build and always has the form:
LIMIT unitname # (with a number from 0 to at least 99)
- example:
Limit ARMMAKR 0
means the ai is not allowed to make any Arm metal makers.
(Note this isn't the same as the Arm Moho Metal Maker or Core metal maker!)

The effects weight has is a little harder to understand. If the weight
command isn't used then I presume the game uses a default weight of 1.
(I'm *REALLY* not sure on the default weight, so I try to weight
everything!) The Weight command increases or decreases the probability
that a certain unit will be built NEXT and always has the form:
WEIGHT unitname # (the smallest usable number is 0.05, the largest is
probably 255)
-example:
Weight ARMFLASH 9
means Flash tanks would make the vehicle plants seem like flash tank only
plants.
(this might be part of a flash-rush ai.)

Another "command" seen in many ai text files is 2 divided-by signs
together "//" on the start of a line. It tells the ai to not do whatever's
on this line and is just info to read if you're trying to understand what
the ai does.
example:
// Nuke by the 10 minute mark!
(doesn't do anything, but sure looks good. :)

There's even divider commands to separate different parts of the ai text
file for easy setting, medium setting, and hard setting. These are the
"PLAN diff" commands. If you want to include parts of an ai file that are
common to all difficulty settings, that can be done by putting the
commands BEFORE the plan sections. example:

weight ARMFLASH 9

plan easy
// total pushover, doesn't build anything it might accidentally hurt you
with.
limit ARMFLASH 0

plan medium
// it might try to attack you...
limit ARMFLASH 10

plan hard
// Plan to lose!
limit ARMFLASH 99

(So, for the above example, all difficulties weight flashes to 9. But the
different skill levels only allow the ai to build so many flash tanks at
one time: 0 for easy, 10 for medium, and 99 for hard.)

If for any reason a similar command is repeated twice in an ai profile,
like:
limit ARMFLASH 0
limit ARMFLASH 99
the TOP command would be the command the ai uses (UNLESS they're under
differnt SKILL settings) - and no flashes would be built. Although you'd
be a little crazy to have that kind of repeated lines in your ai,
universal commands such as:
limit plant 10

(Limits TOTAL number of factorys/plants the ai can make to 10.)

could override later commands like:
limit ARMAAP 12

(Limits Arm's advanced aircraft plants to 12.)

That's all the commands I have. There's nothing there about not building
something until the ai has enough energy/metal. There's also nothing there
about NOT building something if the ai's under attack. The original
Cavedog-made ai profiles do not use reasonable weights OR limits on units.
This is why I say the ai can be improved over Cavedog's but only so much.
Because the ai will always be a little random in what, when, and where it
builds. And it'll almost never build something right when it needs it most.

However, if something is weighted VERY low (I.E. Weight ARMGUARD 0.05)
then that item will most likely only get built if the construction
units/buildings have nothing else they are allowed to build. So when all
the resources are finished, THEN my ai is allowed to build guardians which
are very expensive metal-wise.

Weights seem to work better when placed at the top of the ai profile.
Since the ai profile is read from top to bottom, if 2 commands change the
same thing then the TOP command would be the one the game uses.

All this is not enough information to make a good ai, however. That is
best done by trial and error, as mine has over the last 6 months.

Then what does make a good ai?

I ask myself that question a lot:
Is it an ai that attacks early?
Or a early bertha-builder?
Or an ai that builds a well-defended base?
Are its ground forces mostly tanks, kbots, or both?
Does it build lots of aircraft?
What about an ai that will regularly commander-rush you?

These things can all make an ai BETTER, but NONE of those are what makes a
good ai!!!

A good ai is one that can get resources quickly and uses all its resources
to further increase its growth AND attack the enemy. The way it attacks
the enemy is just the details! If you don't have the resources to run your
war machine, your war machine doesn't run.

An ai can be made to take almost all of its starting resources and make
flash tanks out of them. This could make for an ai that flash rushes quite

well, but its later attacks would dwindle in strength or at least not grow
very quickly. After finding out how to defeat it once (hint: try building
some HLT's or LLT's with DT around them...), it'll quickly become less and
less of a challenge - meaning that it's not a good ai.

So, a good ai should build nothing but resources?
--

That's what the ai in Cavedog's v3.1 patch seems to do... ;)

But that doesn't work either, because it's very hard to attack the enemy
with solar panels, metal extractors, and construction units. The ai must
slow down its rate of growth to build defensive and offensive units as
well. A good ai must use its resources wisely!

Obviously wasted resources are bad?

If an ai is wasting metal, that's part of a potential attack unit that
COULD have been made to attack the enemy. If an ai is wasting lots of
energy (like +200 energy a second or more), that *COULD* have been turned
into metal makers that *COULD* make the metal to make a potential attack
unit that *COULD* have been made to attack the enemy. Even having a
construction unit or factory not doing anything is wasteful - because if
they weren't needed, more attack units *COULD* have been made instead of
those worthless units.

It's not supposed to do too much at one time, but is ALSO supposed
to do everything?

Yes, and that's the problem. If the ai could build a huge super-defended
base while launching massive ground attacks, large air attacks, and firing
berthas and nukes - all in 20 minutes - it'd definitely be a kick-ass,
uh... I meant good, ai. So, unless we make an ai that cheats, (well more
than it *ALREADY* does...) we have to settle for less. Maybe it can do all
that by the 1 hour mark instead of the 20 minute mark. But if it builds a
tiny airforce instead, the massive ground attack, berthas, and nukes might
be ready by the 40 minute mark. If nukes are left out, that time might
drop to 30 minutes. And if all that is wanted is a massive ground attack,
the ai can pull that off in 25 minutes. If you settle for a smaller ground
attack made up of just tanks and no kbots, that just might occur in under
20 minutes. This doesn't mean that the ai won't do all those other good
things, just that they won't happen until later.

So optimally, the ai should have 0 metal and 0 energy in storage?
--

You'd think so, but that sort of balancing act is both impossible (as long
as the ai is still alive anyway) and unhealthy. If the ai needs its
production to run constantly at peak output, all you'd have to do to
drastically slow it down is kill a single solar panel. The ai would then
require more energy than it was producing. Since it had no energy stored
away for a rainy day, metal extractors would quit making metal and
factories and construction units would be slow to complete their build
tasks for lack of metal AND energy. The resulting imbalances that these

cause are extremely erratic - going from 0 energy often up to max energy,
and metal increasing and decreasing rapidly as factories finish units.
Such complex behavior can be described as chaos theory based on the
butterfly effect, and is best left for calculations on a Cray
supercomputer. In short, it's too difficult to do *AND* it's not useful.

(This is starting to sound like the difficulty of riding a unicycle on a
tightwire in an earthquake WHILE someone's shooting at you...)

How much resources should the ai be using to stay balanced?
--

There are no magic numbers here. But hitting 0 metal isn't good and
hitting 0 energy is MUCH worse.

Early on, the ai's metal should rapidly decrease to just above 0. After
that, it's personal preferance and what you want the ai to do - so long as
stored metal stays just above 0 and just below maximum.

If the ai does hit 0 metal, it should not stay there very long. A example
of staying at 0 metal too long is what happens when the ai tries to build
multiple guardians at once - that can keep the ai from building anything
else for a long, LONG time (30+ minutes even). If it were working on only
1 guardian at a time, the 1st guardian could be finished and be useable
before the other guardians are built. A base with 1 finished guardian is
much better than a base with 4 unfinished guardians when enemy ground
units come knocking. (An unhatched egg is no chicken!)

For the same reason, energy should be used at a rate so as not to use up
all the energy in storage. Later on, some energy surplus should be made to
cover possible energy "spikes" caused by d-gunning, laser weapons firing
(including bertha-like weapons), and metal makers turning on.

If your ai's strategy relies heavily on lasers, MUCH more excess energy is
needed than if your ai is almost laser-free. Since Core leans towards lots
of units with lasers that need energy, Core should produce more energy
than an equivalent Arm.

In the LONG term, the ai should use about as much metal as it's making and
use LESS energy than it's making.

It's like the ai is totally ignoring my ai profile!
--

Cavedog installed some fail-safe ai routines in their executable so that
if (more like WHEN...) the ai runs out of metal or energy then it builds
whatever metal or energy producers that it can. This is actually quite bad
for us ai profilers, because while the fail-safe routines are in use the
ai is ignoring the ai profile weights on units. So a low energy fail-safe
tells the ai to go build some solars, windmills, or tidal generators. A
low metal fail-safe tells the ai to build metal extractors or metal
makers. If the ai has already reached its max limits on energy providers
or metal providers, it pretty much just gets stupid if the fail-safe modes
kick in.
And if the ai is out of energy, having 10+ construction units all trying
to build 10+ solars at once won't help. Another problem is that 0 energy
causes the metal extractors and metal makers to quit making metal but NOT

quit draining energy. Once the metal reaches 0, the ai often mistakes the
energy crisis for a metal crisis and builds more metal extractors (or
worse yet, metal makers) to "fix" the problem, when it really needs a
couple solars.

It starts building lots of solars even though it has max energy!

Another problem is the fail-safe routines don't always shut down when no
longer needed, the ai may make solar after solar after solar even though
it has max energy and much higher energy production than it is using. This
could also mean you've weighted solars too high in your ai profile! A
similar problem can happen with the metal extractors.

Why is the ai slow building a fusion reactor?
--

I believe there is a routine in the executable that checks to see if the
ai has the metal and energy to build a particular unit - if not, it often
doesn't build the unit -- even if it is the unit that it desperately
needs. My offering of proof that such a routine exists is that the ai is
"reluctant" to build high-cost items like a fusion reactor, geothermal
plant, or advanced factories when it is low on resources. I haven't
determined exactly how the ai decides that it doesn't have enough
resources, but think it's resources it has stored plus the resources its
making. Whatever calculation it uses, it doesn't seem to do a good job
because it almost always ends up running out of resources. Perhaps that's
because the ai doesn't consider what the other resource-consumers are
doing (or WILL do!) and instead assumes that the one resource-consumer can
have ALL the resources.

Despite this looking like a minor problem that can be corrected with a
good ai profile, this can cause the most frustration.

How come the ai built 5 Advanced Aircraft Plants - I LIMITED
it to just 3!

The ai doesn't count a unit towards its LIMIT maximum unless that unit is
completed. So, if 2 advanced aircraft plants are complete, many more
advanced aircraft plants may be started up to the limit of the ai's
current basic construction aircraft. If the ai has 4 basic construction
aircraft at the time, the probable maxumim of advanced aircraft plants is
6.

I call this the "OVERBUILD BUG", but you'd never know about it unless
you're messing with the ai profiles in the first place - that's why I
didn't mention this problem earlier. I personally don't see this as much
of a problem, EXCEPT with the moho metal makers on nonmetal maps - 1 of
them is PLENTY enough, 2 or more is disaster (that's why I weight them
VERY low...).

Otherwise, having the ai overbuild its base - exceeding the normal limits
- is probably ok. The ai would most likely only do that if it already had
a good resource base and probably would be able to support the extra

resource strain. If the ai wasn't doing well, the chances of this
happening are unlikely at best - so it won't hurt the ai much then.

The difficult MATH side of ai profiles:

Now, you can plug numbers into your ai profile for weeks on end and not
know why you don't get the desired results. Although the numbers the ai
uses are only "suggestions" to it, over very long periods of time
calculations can be done to determine the results. Even if you don't know
the exact value, it's helpful to have an idea what the chances of a
particular unit being made is. To do this, I introduce the term build or
production probability - a percentage calculated by weights on each unit
produced by a factory.

For instance, the Arm Vehicle plant has:
Construction Vehicles (weight=3 limit=4),
Flashes (weight=9 limit=no limit!),
Jeffys (weight=1 limit=0),
Samsons (weight=1.5 limit=no limit!),
and Stumpys (weight=0.5 limit=no limit!).

The total weights add up to 15, BUT since Jeffys are never made (limit=0),
the actual weight total is 14. Build probability will be calculated by
taking the weight of each unit and dividing it by the ACTUAL WEIGHT TOTAL.

The Construction Vehicle will have a 21.4% build probability.
The Flash will have a 64.3% build probability.
The Jeffy will have a 0% build probability, since the limit is 0 on them!
The Samson will have a 10.7% build probability.
The Stumpy will have a 3.6% build probability.

If you add up 21.4% + 64.3% + 10.7% + 3.6%, the total is 100% as it should
be.

After the limit is reached on Construction Vehicles, the production
probability changes. Total weight is now only 11 since Construction
Vehicles are no longer a consideration.
The Flash will have a 81.8% build probability.
The Samson will have a 13.6% build probability.
The Stumpy will have a 4.5% build probability.

Adding 81.8% + 13.6% + 4.5% = 99.9% (with a rounding error to account for
the missing 0.1%)
So, this also adds up to 100%.

What these numbers mean is that until the construction vehicles max out,
the vehicle plant should make 6 Flashes, 2 Construction Vehicles, 1
Samson, and maybe a Stumpy - or another flash for every 10 units the
vehicle plant makes.

It's very hard to tell if an ai will make more bulldogs than stumpies,
because those come out of different plant types. It also gets complicated
if there's 4 of one plant type but only 1 of another and 2 of a third type
- to predict what the unit percent composition made by all the factories
will be. However, the unit build probability for each factory type can be
quite helpful in creating a more balanced attack force.

This same build probability can be applied to ALL types of construction
units, even the commander. The reason to check construction unit build
probabilities is an ai profile usually sucks because its RESOURCES and
FACTORIES are not weighted at balanced levels. The basic construction
units need the MOST careful build probability balancing. They are
responsible for building much of a base.

UNFORTUNATELY, the ai fail-safe routines prevent the weights you put on
the construction units from being anywhere close to accurate. This is
where you have to use rediculous numbers to get semi-acceptable results:
like weight 9 (or more!) on geothermals.

The ai's clockwork build patterns:

Firstly, I tell you that the ai's build pattern is random. Now, I'm
telling you it's actually clockwork. When, where, and what the ai builds
is based on the map, what the ai has already built, and what the ai's
current resources are. Even extreme weights on units, both very low (like
0.05) and very high (like 9) are ignored by the game if any overriding
condition occurs (like fail-safe ai routines). If the ai is ALLOWED to
build it AND the executable tells the ai that it NEEDS to build it NOW,
that's what the ai will build regardless of how seldom it's SUPPOSED to be
building it.

Anyway, this is the basic pattern that the build units follow:

Commander:
1.build at least 1 metal extractor (or metal maker if not possible)
2.randomly alternates between metal producers and energy producers
3.build process becomes a matter of ability - if energy and metal are in
good supply, typically factories are built, otherwise mostly resources are
built. (it's only during THIS step that the commander is likely to build
anything it can.)
4.After at least 1 construction unit is build, the commander MOVEs back to
the "center" of the base (somewhere near where it started often)
5.Following the MOVE, the commander is on repair patrol for the remainder
of the game - if there's any construction units left.
6.If there's few construction units left (and few factories), the
commander resumes step 3.

Basic Construction units:
1.If resources aren't high, randomly alternates between metal producers
and energy producers.
2.build process is a matter of ability - if energy and metal are in good
supply, typically factories are built, otherwise mostly resources are
built.
3.Some random time later, the construction unit goes on repair patrol.
4.If much of the base is destroyed, the construction unit resumes step 2.

Advanced Construction units:
1.Almost always tries to build a moho mine or moho metal maker first -- by
this point in the game, the ai is almost certainly low on metal.
2.Superweapons like berthas are often built next, even in preferance over
fusion reactors.
3.build process becomes random, but based slightly on need - moho
mines/moho metal makers if low on metal, otherwise almost anything.

4.Some random time later, the advanced construction unit goes on repair
patrol.
5.If much of the base is destroyed, the advanced construction unit resumes
step 1.

How come my ARM ai *SMOKES* my CORE ai?

OR, how come my CORE ai smokes my ARM ai really bad?

ARM's units, as a whole, move quicker than similar (if there are any!)
CORE units. This applies to construction units as well. One possible
reason why the ARM ai seems to have an advantage over a CORE ai is CORE
takes just a little longer between each building project - therefore,
after 10 minutes of being a little slower each time - CORE ends up behind
in production. Note: That's only my theory. :P

A simpler reason is that you assumed ARM and CORE could be told to build
alike with the same results. CORE's units are often more expensive, so
CORE may end up out of both energy and metal while ARM has plenty of both
- despite almost identical metal/energy incomes.

If you spend more time "tweaking" one side than another, you *SHOULD*
expect this result. If you play ARM more, you'd probably know what a good
attack force for ARM is but might not for CORE -- so although the CORE
builds lots of attacking units, because it doesn't build a good MIX of
attacking units, it seems to lose more battles than it should. If you
really like one side over the other, you may unknowingly "stack the deck"
in its favor.

Another reason for the imbalance is what I call the "Coffee-Break" bug,
where units stop moving after killing all immediate enemy units. If the
attack force is under attack by a guardian or punisher, it's likely to
take heavier losses if ARM than CORE because CORE's units *generally* have
more armor.

Ok, I caught all of that. But my ai still seems slow to buildup!

There's something subtle going on with the ai profiles, despite their
apparent simplicity. It's not so simple that you can weight flashes and
vehicle plants really high and end up with a (good) flash-rushing ai.
Almost every change affects something else! If vehicle plants are weighted
to 9, that will mean that the construction units will build these in
greater preferance over resource providers. So the ai might end up with
low resources meaning it'll have very few vehicle plants built (since it
had little resources to build with) - even by the 20 minute mark.

The computer isn't slowed down much by a LONG ai profile - like one over
20kb long. But it probably doesn't hurt to keep the ai profile as short as
possible, leaving comments about how the ai works out of the ai profile
itself. You could make an ai template laying out all the unit limits, and
copy and paste from it into your ai profile. That way you don't have to
memorize unit abbreviations.

Weights seem to be more effective if they're put near the top of an ai

profile. Even Cavedog's ai profiles seem to follow this logic. Perhaps the
ai is more likely to act on the first thing it reads in the ai profile!

testing, Testing, TESTING!

You cannot know if an ai will be any good unless you test it. Playing
against it over and over again may seem like a decent testing method, but
it's almost impossible to play the same way twice. If your testing is to
determine if minute changes result in an improvement for the ai, that will
most likely be too well hidden in random variables introduced by such a
testing method. Plus, if you're playing it - you're not spending enough
time watching what it is doing. On the other hand, the ai may play BETTER
against another ai than a player - who won't do what it's expecting. So
even if an ai is good versis other ai's, it may suck against people! Get
the ai good versis another ai before testing against people, or they may
just laugh at you.

Once the ai gets good versis the ai, then test on live victims - uh, I
mean people... ;) Don't be surprised if a good player sends you back to
the drawing board when your ai proves less successful than you hoped, and
don't be afraid to ask people what the ai should've done to be even better
-- even if they lost to it! BTW, treat people kindly for helping you test
your ai and always try to thank them for their time. (Otherwise, it may
get harder and harder to find lab rats. ;)

Generally, I test on big maps that can handle a lot of players on it at
once. For my default.txt ai profile I use Greenhaven most because it is
both big and loads fast.

I have quite a few ways to test the ai - and most are unbiased:

1.Rather than have multiple computers set up, I can play skirmish on my
own computer with 9 AI's running around. I am allied with 4 and the other
5 are allied as well. Often I play 4 Arm vs. 5 Core, to see the
disadvantages against the two. This only lets me test 1 ai at a time, but
gives me a good baseline for when the ai launches an attack, how well it
builds resources, how quickly it builds base defenses, and how well it
fights off attacks.

2.I crossbreed ai's together - so I can play my Arm ai vs. someone else's
Core ai or vice versa. This is not a very scientific test - because of the
differences of ARM and CORE - but is most informative. ;)

3.I play with my ai vs. a different ai over the internet with somebody. We
are teamed with an ai (typically mine, so we can see the battle through to
the end :P)and stand behind the ai's base and hardly build anything -
because it would increase lag. We even have cheats enabled so we can use
the +VIEW # command to see how the ai's resources are doing.

4.On a Lan, I don't normally play just 1 ai vs 1 ai - I team 2 ai's of the
same kind vs 2 ai's of the same kind - can't do more, because the game
won't handle over 10 players (even if they're watchers they count as
players). All but 1 or 2 players are watchers. If ALL players are
watchers, the mission will immediately end thinking the human players have
all died.

I'm doing a lot of testing, but what am I looking for to know what
to change?

Running a lot of tests may help you improve an ai profile, but if you
don't know what you're looking for (or AT, as the case may be) the tests
are probably a waste of time. Heavy useage of the +view # cheat is a MUST
- otherwise you can only guess what the energy and metal state of an ai
is. Factories quit producing mobile units when less than 100 metal is in
storage. If metal makers are blinking it ussually means metal consumption
is above metal production. An attack force that runs around in circles
seems to be the result of metal/energy shortages for that ai. An ai that
does great because it always starts with 10k resources might be really
wimpy with 1k resources - ai's ussualy have a resource range that is
"optimal" for them, normally this is near the 10k mark. Large increases in
energy consumption often means the ai either fired a bertha, turned on a
moho metal maker, or started building energy-intensive unit/s. Likewise,
large metal consumption increases often means something like a guardian or
advanced plant is just being started. Temporary increases in metal or
energy production almost always means the ai is reclaiming trees, rocks,
or debris on the map. Large, sudden permenent increases in energy means a
geothermal or fusion reactor was just completed. It's notable that the ai
can turn on and off a few units that has an on/off switch even WHILE the
unit is being built. So the moho metal maker can start providing extra
metal (and tremendous energy drain) the VERY moment it is started - long
before it is finished. It's one of the ways the ai cheats, but ai profiles
alone won't stop that.

If you're in a skirmish game with 9 ai's (all ARM, for instance) and NONE
of them build a advanced vehicle plant before the 20 minute mark - and you
WANT them to, you'll probably need to increase the weight on the advanced
vehicle plant. The case may be that it's because all 9 ai's stayed out of
(or very low on) metal and/or energy and could have nothing to do with the
weights on the advanced vehicle plant.

For the default.txt ai profile, whenever the ai builds too many solars and
metal extractors before its first factory it ussually loses to one that
didn't. Also, if its first factory is an aircraft plant it ussually loses
as well.

Important ai information to record:
1.What the ai's overall metal/energy production for a 10-minute game was -
with SPECIAL attention to how much it wasted. Resources are probably the
most important - if the ai could get another 1k of metal out of the ground
in 10 minutes, it'd be much better. Energy is probably in the 60k to 100k
range in 10 minutes, with metal in the 4k to 7k range on a nonmetal map
(Greenhaven, in this case.) Naturally, if the ai was attacked and lost
outlying metal extractors its metal production would be considerably lower.
1.WHEN the ai's launched their first attack (notice I said launched
instead of when the attack arrives at its destination - which varies
GREATLY with the size of the map and proximity to an enemy base). An ai
that can launch an attack in 5 minutes is possible - with 7 minutes still
being ok, even with low resources (1k and nonmetal map). On a metal map
with 10k resources, this time can shrink down to as low as 3 minutes - but
5 minutes is still more common.
2.How quickly level 2 units are added to the attack forces. Typically,
this occurs in the 10 minute to 20 minute timeframe.
3.How quickly the the ai starts building level 2 and level 3 base

buildings. Commonly, this is in the 10 to 30 minute timeframe.
4.How built-up the ai's base defenses were by the 10, 20, and 30 minute
mark - and even later. The ai can be made to build guardians and sentinels
ASAP, but that will badly hurt resource production.
6.How quickly can the ai reach the unit max. For a unit max of 250, the
winning ai in a test can reach that amount in as little as 25 minutes -
even on a nonmetal map. More commonly though, unit max is reached later -
or even never if you set your ai profile limits very low. Reaching unit
maximum too early can result in the ai having lots of level 1 units but
few level 2 or level 3 units. Just how GOOD is 100+ flash tanks anyway?
Wouldn't 30 flash tanks (or fewer) at a time be just as effective?
7.At what point does the winning ai manage to reach a mature level 3
economy - with redundant factories, fusions, base defenses, and metal
producers. This is the point where even nuking the ai may not slow it down
-- if it was at unit max, nuking it will give it more unit slots to build
more mobile attack units! The earliest I've seen an ai reach this point
was just under the 30 minute mark, but even the 1 HOUR mark is acceptable.
If the ai doesn't use nuke silos, lots of laser towers, berthas, or moho
metal makers it doesn't need 1000+ energy production to produce good
ground-force attacks. Metal is vital, but if the ai uses cheaper but
effective units the lack of resources will go entirely hidden from
whoever's on the RECEIVING end. ;)
8.How early does the ai get a "STEAMROLLER" attack force that isn't
stopped even by base defenses like guardians and sentinels. The attack
force should be resupplied with new units quickly (like 1 every 15
seconds) to be effective in the meat-grinder of close combat. Often, it's
not the SIZE of the attack force that causes it to win so much as how long
its units last and how quickly they are replaced. ARM should have quicker
unit replacements than CORE simply because ARM's units generally have
lower armor (and cost less) and tend to die quicker.
9.What's missing? What could the ai add to its base or attack force that
would save the day.
10.What isn't helping as much as it should? Maybe lowering the weight and
limit on that unit will make the ai more effective. Try eliminating that
unit and see if the ai is better without it.

It's hard to tell if an ai profile is improving just by testing it against
itself. So, test one side at a time against the other side WITHOUT
changing the other side. This can be done by copying and pasting all ARM
entries from 1 ai and all CORE entries from another ai into a single ai
file. It really pads the ego to watch your CORE ai totally mow through
Cavedog's original (v3.1 patch even) ARM ai. Whoever said CORE can't rush
effectively probably hasn't seen a Storm and/or Instigator rush! If your 4
CORE ai's can kill 5 original ARM ai's in under 20 minutes on Greenhaven
with only 1k resources, consider your ai at least decent! (Mine can
sometimes do that.) BTW, It's wise to team up with the (probable)
winning side.

What kind of ai profile *DOES* a map need?

Most maps fall under the standard general categories of Default,
SeaBattle, AirBattle, and Metal - but some need specific ai profiles made
just for them. An extreme example is an all-water map with very little
land. Seabattle assumes that there is land to build a good sized land
base, particularly solars, metal extractors, hovercraft and aircraft
plants. Lacking that, the ai will build very slowly - if at all - and will
be easily beaten. The basic ai profiles categories are too vague to cover

many types of maps. So things to consider when making an ai profile are:
1.How large is the map? (can't flash rush effectively on a 30 x 30 land
map)
2.How much water (by percent) is the map? (possibly a naval ai map?)
3.Is the land and water alternating making either form of attack difficult
or impossible?
4.How plentiful is metal on this map?
5.Is there any geothermal vents on the map?
6.How flat/hilly is the map?
7.Are trees so thick that they must be reclaimed to have room to build?
8.Is there lots of reclaimable rocks around?
9.Does the map have consistantly high winds or gusty winds?
10.Because of some feature on the map, does one particular unit (or type)
have a significant advantage over the others? (such as narrow land passes,
steep slopes, or thick trees)

1.An example of a large map that isn't a typical default ai profile is
Greenhaven. It's TOO big for a flash rush to reach an enemy base early
enough to make winning easy - not in a 1 vs 1 game, anyway. Such a map may
require the ai to build slightly more base defenses than usual and rely on
long-ranged attack types (Merls, Berthas, aircraft) to effectively destroy
the enemy base.
2.Gods of War is a good example of a some-land, lot-water map that's well
suited for a naval ai.
3.The best examples of this is Over Crude Water (a metal map) or Evad
River Confluence. Both maps have water acting as a barrier to large land
attacks. Neither a land attack or naval attack can easily reach the enemy
base. This forces relying on hovercraft and aircraft to strike the enemy
base. So they're both air battle ai's.
4.Some maps have so little metal - such as Painted Desert - that the ai
either must spread out all over the map or build metal makers. And the ai
cannot manage metal makers very well, always wanting to build way more
metal makers than it has energy to run. Also, its construction units will
suicidally wander into enemy bases trying to build a metal extractor on
unused metal spots.
5.Geothermal plants are vital stepping stones to getting fusion reactors
for players, but for the ai who shouldn't build such an energy-hungry base
they are even MORE vital. An ai can have a large base totaling 50
buildings and only need 15 solars and 2 geo's to run it. On nonmetal maps,
where only 1 geo can be built on a vent, the ai should have a max limit of
2 to 6 geothermal plants (depending on the total number of vents on the
map) so that it doesn't wastefully and suicidally send its construction
units into the enemy territory to build a geo on thermal vents there. On
metal maps, the max limit on geos can be as high as 10 without any
problems, because up to 4 geothermal plants can be built on each vent.
6.A very hilly map makes for lots of killzones and choke points that by
the middle of the game render ground forces useless. Plus a hilly map may
have very little room to build a base. A few short-ranged LLT's and
guardians are best as base defenses because line-of-sight is so
restrictive. The guardians can shoot over some of the hills, and the LLT's
can guard passes and enterances to bases.
7.Maps with wall-to-wall trees make big bulky units less useful, so often
the level 1 kbots and aircraft are the only units that can get around
effectively.
8.Unless there's so many rocks that they are in the way, this has little
effect on an ai. However once the commander goes into repair and reclaim
patrol mode, the rocks may be the only thing that keeps the ai's factories
producing more units.
9.Wind generators should be used instead of solars if the wind is

consistantly strong, or half solars half wind generators if the wind gusts
are strong enough (like +20 or more energy).
10.Metal Isles has large islands with very tall defensive walls. Although
a huge naval force may take control of the water around the island, it
will be unable to shoot into the middle of the island with cruisers and
battleships because of the size of the island and the high walls. Missile
frigates are more useful for attacking such bases, but cannot be made the
bulk of the naval force or it will surely lose to a naval force made
primarily of cruisers and battleships. Also, since the map is rather
large, significant amounts of anti-aircraft ships are needed with the
naval force.
The flash tank excels on Metal Heck - it is fast and cheap, allowing for
early base attacks. Plus it is small, making it hard to hit and better
able to move around debris.

About MY ai...

My ai has no balance of base defense vs attacking force - it is almost
pure attacking force. It builds a token base defense consisting of a
couple berthas, a very few guardians, some flakkers, and quite a few
defenders. Only the defenders are built early on - they are a holdover
from the long-ago popular strat of c-napping the commander before he could
build much. I figure defenders are cheap enough that they won't slow
production down to a crawl while still providing some defense. It might
seem that the base is very vulnerable to an early rush, but that's
probably when it's the most densely defended by mobile units. Later on,
when the ai's forces are attacking elsewhere the ai's base can be pretty
easily stormed with ground forces.

Getting a well-defended base early on is of low priority for an ai. To do
so will slow or even stop its exponential growth for many minutes. Let the
mobile units defend the base early on, and let the construction units
build good base defenses only if they have nothing better to do.

My ai's weights go from 0.05 to 9, where a weight of 1 is assumed to be
average. A weight of 9 is used to almost force the ai to build that unit
instead of anything else and build it quick. A weight of 0.05 is for stuff
I don't want the ai to build until AFTER other things are built. When the
unit LIMITS are reached for high-weight (1-9) items, then and only then
should the very low-weight (0.05-0.2) items be built. I tried a weight of
0.01 for units, but they won't get built at all - the ai rounds weights
that low down to 0. The same weight and limit tricks can be used on
attacking units to assure that you get frontline units quickly but not too
many - and that you later get supporting units in decent quantity once the
ai's attack force is large enough to defend them. An example of this is
Flashes for frontline units and Merls for supporting units. Flashes are
good, but too many just get in the way of one another. Merls are also
good, but putting them on the frontline will make them seem useless.

Putting an upper limit on every base building is a must, otherwise once
the ai reaches unit max and after each attack the ai will replace some or
even all of its attacking units that got killed with base buildings. This
results in the ai's attacking force growing smaller and smaller. At that
point, nuking some of the ai's base literally pisses it off because it is
freed up to make more attacking units! For the same reason, even the
attacking units themselves need an upper limit to prevent overpopulation.
More than 30 flash tanks just get in each other's way being unable to fire

on targets. For my ai, I presume that the game's unit max is somewhere in
the 150 to 300 range. If the unit max is lower, the ai will become
pacifistic (not attacking with ground forces) much earlier. On the other
hand, if the unit max was 500, the ai would never really utilize the extra
unit slots to make its attack force OR base huge.

My rule of thumb for the ai is simple - for ordinary nonmetal maps, the
default.txt ai will suffice. But if there's anything unusual in the map,
the ai needs to be modifed to take advantage of it - be it high winds,
narrow passes, lots of water, scarcity of metal, even a change in unit
max. Any map can benifit from using a modified ai profile instead of the
original ai profiles in TA:CC, but some maps almost demand a special ai
profile for the ai to be effective at all!

TA Weapons Creation

unknown

I like to explain how a weapon file in TA is build up, and I hope it is of
any use to any new unit designer. I took all of my information from the
original Cave Dog weapons file.

The actual weapon file in the weapon directory of the unit (ufo)

Weapons.tdf - Here you place the miscellaneous weapon types

Types of weapons

There are different weapons but any of the weapons must fit in one of
these basic categories.

ballistic Weapon is fired according to a ballistic path using gravity
lineofsight Weapon is fired in a straight line, gravity does not effect

path
dropped Weapon is dropped in order to use it, typically a bomb but

could be a chemical

Important values and behaviour of the weapon.
ID A unique value in the range 0-255 which identifies the

weapon
range Coverage in pixels what the protection umbrella is for

weapons that shoot other weapons
noexplode No explosion when weapon impacts target
reloadtime Seconds between shots (floating point allowed)
energypershot Energy consumed per shot, most use none
weapontimer How long weapon is active in seconds (floating point

allowed), trajectory weapons use 0 so it is calculated
noautorange When set the weapon will not detonate at range

automatically, used mostly for heavy rockets

weaponvelocity Maximum attainable weapon veolocity in pixels/second
weaponacceleration Expressed in pixels/second/second
turnrate Used for guided weapons, is in angular units (0-

64k)/second
areaofeffect The total area that receives that damage, one impact

per unit in the area
edgeeffectiveness The percentage (1.0 = 100%) of the damage that is

inflicted at the edge of the area of effect. Used for
drop-off

Weapon Characteristics

turret Weapon must be deployed from a turret with a 360 deg

rotation and pitch
firestarter Weapon will cause fires, expressed as a %, where 100%

guarantees a fire
unitsonly Weapon will only detonate on enemy units as opposed to

obstructing terrain
burst How many repeat times a weapon fires in one burst, ie.

Flamethrower
burstrate The time delay when in burst mode between events
sprayangle Maximum deviation from the straight line to the target the

weapon strays, used for burst weapons
randomdecay Maximum time delta that burst weapon will randomly decay at

end of path
groundbounce Weapon will not detonate with the ground but instead bounce
flighttime The time the unit will fly for after it enters the second

phase of operation, used for starburst missiles
selfprop Weapon is self propelled with a burn time described by

flighttime
twophase Indicates weapon operates in two phases
weapontype2 Describes another weapon that the weapon turns into in the

second phase
guidance Indicates that weapon is guided and uses the turn rate

above to track enemy unit
tracks When set the weapon will track a moving target after a

weapon conversion
waterweapon Weapon is meant to travel through water
burnblow Weapon will detonate when it comes to the end of its range
accuracy Amount of accuracy in 64K deg that weapon is good for,

0=100%
tolerance Amount of accuracy weapon will use when aiming, most are

default 0
aimrate How fast (on average) the weapon aims, in 64K deg / sec.

Used by UnitView.
startvelocity Weapon will start at this velocity instead of 0
minbarrelangle The minimum angle (in degrees) the barrels can point, used

in ballistic calculations

Special weapon stuff
paralyzer Weapon will stun the enemy for a length of time described in the

damage field, time=ticks.

Looks of a weapon
model 3D model to use as this weapon
color Color of beam weapon from the game palette
color2 Color to use on the beam weapon to make it looks better

and cooler
smoketrail Indicates whether or not a weapon will emit a smoke

trail
smokedelay Smoke dispersal interval expressed in seconds
startsmoke Draw a puff of smoke when the weapon fires
endsmoke Draw a puff of smoke when weapon terminates
rendertype Type of rendering system to use, 3D model, bitmap, etc.
beamweapon Weapon is a straight beam weapon like a laser
explosiongaf .GAF file that the explosion art is in
explosionart name of animation sequence for explosion
waterexplosiongaf .GAF file that the water explosion art is in
waterexplosionart name of animation sequence for water explosion
propeller if the model has a propeller that spins

The sounds it makes
soundstart Sound to make when the weapon fires
soundhit Sound to make when the weapon detonates (if the weapon

detonates)
soundwater Sound to make when the weapon hits the water
soundtrigger Make the weapon sound when the weapon fires in burst mode

Weapon Controls
commandfire This weapon will need to be expressly fired by the user each

and every time it is used, i.e. a Dgun

Needed resources
Here you describe the amount of metal and energy it takes to fire the
weapon if applicable

energy Amount of energy needed
metal Amount of metal needed

Total Annihilation: Kingdoms

Directory Structure and File Formats

Directory Structure

D\CAVEDOG
 00000407.256│
 00000409.256│
 0000040a.256│
 0000040c.256│
 00000410.256│
 binkw32.dll│
 boneyards.hpi│
 boneyards2.hpi│
 bymaia.dll│
 Cartographer.exe│
 ChooseRenderer.exe│
 clcd16.dll│
 clcd32.dll│
 clokspl.exe│
 data.hpi│
 dplayerx.dll│
 drvmgt.dll│
 english.hpi│
 INSTALL.LOG│
 Jersey.hpi│
 Keys.TDF│
 kingdoms.esk│
 Kingdoms.exe│
 KINGDOMS.icd│
 KINGDOMS.ID│
 Kingdoms.key│
 kingdoms.mmz│
 maps.hpi│
 missions.hpi│
 MP3DEC.ASI│
 mss16.dll│
 mss32.dll│
 mssb16.tsk│
 patchw32.dll│
 ReadMe.htm│
 ReadMe.txt│
 RendererHelp.txt│
 restart.exe│
 Rover.dll│
 secdrv.sys│
 sections.hpi│
 Startup.tdf│
 terrain.hpi│
 Uninst.isu│
 upgrade.dll│
 V2Rocket.hpi│
 v3readme.txt│

 V3Rocket.hpi│
 │

Boneyards├───
 server.byd│ │
 │ │
 Help│ ├───
 Help.def│ │
 Help1.htm│ │
 Help10.htm│ │
 Help11.htm│ │
 Help12.htm│ │
 Help13.htm│ │
 Help14.htm│ │
 Help144.htm│ │
 Help146.htm│ │
 Help147.htm│ │
 Help15.htm│ │
 Help16.htm│ │
 Help17.htm│ │
 Help18.htm│ │
 Help19.htm│ │
 Help20.htm│ │
 Help21.htm│ │
 Help22.htm│ │
 Help23.htm│ │
 Help24.htm│ │
 Help25.htm│ │
 Help26.htm│ │
 Help31.htm│ │
 Help36.htm│ │
 Help37.htm│ │
 Help39.htm│ │
 Help4.htm│ │
 Help41.htm│ │
 Help42.htm│ │
 Help43.htm│ │
 Help44.htm│ │
 Help5.htm│ │
 Help6.htm│ │
 Help7.htm│ │
 Help8.htm│ │
 Help9.htm│ │
 __Help.htm│ │
 │ │
 Images│ ├───
 a1.png│ │
 a2.png│ │
 a3.png│ │
 a4.png│ │
 a5.png│ │
 a6.png│ │
 a7.png│ │
 a8.png│ │
 ButtonBattles.png│ │
 ButtonBoneyards.png│ │
 ButtonCancel.png│ │
 ButtonCrusades.png│ │
 ButtonEditHouse.png│ │
 ButtonEditProfile.png│ │
 ButtonGathering.png│ │
 ButtonHelp.png│ │
 ButtonHostBattle.png│ │
 ButtonHostGathering.png│ │

 ButtonHouse.png│ │
 ButtonLadder.png│ │
 ButtonLocator.png│ │
 ButtonMetaGame.png│ │
 ButtonNews.png│ │
 ButtonNewsNInfo.png│ │
 ButtonOK.png│ │
 ButtonPagePeople.png│ │
 ButtonPeople.png│ │

 ButtonProfile.png│ │
 ButtonQuickplay.png│ │
 ButtonRegister.png│ │
 ButtonSearch.png│ │
 ButtonWarRoom.png│ │
 CrusadesMap.png│ │
 CrusadesRoom.png│ │
 CrusadesRoomButton.png│ │
 end_k2.png│ │
 Help.png│ │
 Login.png│ │
 MovieButton.png│ │
 NnIEditProfile.png│ │
 NnIEditRegister.png│ │
 NnILadders.png│ │
 NnINews.png│ │
 NnIProfile.png│ │
 NnISearchLadder.png│ │
 NnISearchNews.png│ │
 OverviewButton.png│ │
 PlayerPage.png│ │
 PlayerPageSent.png│ │
 PlayerProfile.png│ │
 ReconButton.png│ │
 Register.png│ │
 SearchHelp.png│ │
 SystemMessage.png│ │
 t1.png│ │
 t2.png│ │
 t3.png│ │
 t4.png│ │
 t5.png│ │
 t6.png│ │
 t7.png│ │
 t8.png│ │
 Update.png│ │
 v1.png│ │
 v2.png│ │
 v3.png│ │
 v4.png│ │
 v5.png│ │
 v6.png│ │
 v7.png│ │
 v8.png│ │
 WarBattle.png│ │
 WarBattleForming.png│ │
 WarBattleInProgress.png│ │
 WarCreateBattle.png│ │
 WarCreateGath.png│ │
 WarGath.png│ │
 WarGatheringInfo.png│ │
 WarLocator.png│ │
 WarPagePeople.png│ │
 WarPeople.png│ │
 WarPlayerInfo.png│ │
 WarRoom.png│ │
 WarSearchLocator.png│ │
 z1.png│ │
 z2.png│ │
 z3.png│ │
 z4.png│ │
 z5.png│ │
 z6.png│ │
 z7.png│ │
 z8.png│ │
 │ │
 Ladders│ ├───
 Ladders.def│ │
 │ │
 Metagame│ ├───
 Aramon.png│ │
 aramonShield.png│ │
 Borders.png│ │

 ContestedMap.png│ │
 CrusadeProf1.png│ │
 CrusadeProf2.png│ │
 CrusadesStandard1.png│ │
 CrusadesStandard2.png│ │
 Darien.def│ │
 HonorMap.png│ │
 MetaMask.png│ │
 PreInit.jje│ │
 Taros.png│ │
 tarosShield.png│ │
 TerrorMap.png│ │
 Veruna.png│ │
 wdhit.jje│ │
 Zhon.png│ │
 │ │
 Profile│ ├───
 Achievements.htm│ │
 MGPersonal.htm│ │
 MGPersonal_NoName.htm│ │
 MGProfile.def│ │
 personal.htm│ │
 Personal_NoName.htm│ │
 Profile.def│ │
 TAK_CRUSADES.htm│ │
 TAK_CRUSADES_NOJOIN.htm│ │
 TAK_DUEL.htm│ │
 TAK_history.htm│ │
 TAK_NATIONS.htm│ │
 TAK_NATIONS_ARAMON.htm│ │
 TAK_NATIONS_TAROS.htm│ │
 TAK_NATIONS_VERUNA.htm│ │
 TAK_NATIONS_ZHON.htm│ │
 TAK_overview.htm│ │
 Tak_rec0.htm│ │
 TAK_reconhistory.htm│ │
 TAK_WTA.htm│ │
 │ │
 Templates│ └───
 gameform.htm│
 gameprog.htm│
 gathering.htm│
 MGgameform.htm│
 MGgameprog.htm│
 │

docs├───
 AFlyBuild.txt│
 ASiege.txt│
 TKamRat.txt│
 TRictus.txt│
 VLightHs.txt│
 ZSWolf.txt│
 │

GC├───
 Free Month of Internet .lnk│ │
 Frontier.ico│ │
 index.html│ │
 Left.html│ │
 Main.html│ │
 Top-Left.html│ │
 Top-Right.html│ │
 │ │
 images│ └───
 backgrounds│ ├───
 Back00.jpg│ │
 Left.jpg│ │
 Top-Left.jpg│ │
 │ │
 banners│ ├───
 FGCLogo.gif│ │
 │ │
 buttons│ └───
 Dev-O.gif│

 Dev-U.gif│
 Fgc-O.gif│
 Fgc-U.gif│
 Gsn-O.gif│
 Gsn-U.gif│
 Pl-O.gif│
 Pl-U.gif│
 Tak-O.gif│
 Tak-U.gif│
 │

Maps├───
Movies├───

 Gui│ └───
 GIRL4.BIK│
 GIRL5.BIK│
 GIRL6.BIK│
 GIRL7.BIK│
 KNIGHT4.BIK│
 KNIGHT5.BIK│
 KNIGHT6.BIK│
 KNIGHT7.BIK│
 Loadscreen.bik│
 machine4.bik│
 machine5.bik│
 machine6.bik│
 machine7.bik│
 SNORT4.BIK│
 SNORT5.BIK│
 SNORT6.BIK│
 SNORT7.BIK│
 │

MPlayer├───
 mplaynow.exe│ │
 MPLAYNOW.INI│ │
 Readme.doc│ │
 │ │
 MPLAYNOW│ └───
 MPNETSUE.EXE│ │
 RNAPH.DLL│ │
 URL.DLL│ │
 │ │
 MPLAYER│ └───
 setup.exe│
 │

Music└───
 track1.wav
 track12.wav
 track13.wav
 track14.wav
 track15.wav
 track16.wav
 track17.wav
 track20.wav

 track3.wav
 track4.wav
 track5.wav
 track6.wav
 track7.wav
 track8.wav
 track9.wav

V2 Rocket.hpi Contents
D:\V2ROCKET.HPI

Anims├───
 TitleScreen.jpg│
 TitleScreen.tsf│
 │

Guis├───
 Mainmenu1.gui│
 VisualOptions1.gui│
 │

maps├───
 Abnar's Terrace.crt│
 Abnar's Terrace.ota│
 Abnar's Terrace.tnt│
 Abnar's Terrace.txt│
 Loch Brynn.crt│
 Loch Brynn.ota│
 Loch Brynn.tnt│
 Loch Brynn.txt│
 │

Objects3D├───
 verball.3do│
 │

Scripts├───
 VERBALL.COB│
 │

translate├───
 abnar's terrace.tdf│
 loch brynn.tdf│
 │

units└───
 ARAAT.FBI
 ARACAN.FBI
 arapult.fbi
 LIFDEER.FBI
 Lifdeer2.fbi
 tarship.fbi
 VERBALL.FBI
 VERGOD.FBI
 VERMORT.FBI
 VERPULT.FBI
 ZONFLIES.FBI
 ZONGOD.FBI

V3Rocket.hpi Contents
V3ROCKET.HPI

ai└───
 default.txt│
 │

anims└───
 bigsmoke_1555.taf│ │
 bigsmoke_4444.taf│ │
 bluefire_1555.taf│ │
 bluefire_4444.taf│ │
 dieselflame_1555.taf│ │
 dieselflame_4444.taf│ │
 manabomb_1555.taf│ │
 manabomb_4444.taf│ │
 steam_1555.taf│ │
 steam_4444.taf│ │
 titlescreen.jpg│ │
 titlescreen.tsf│ │
 │ │
 BuildPic│ └───
 Arafly.jpg│ │
 Aragren.jpg│ │
 ARASIEGE.JPG│ │
 aratrans.jpg│ │
 tarang.jpg│ │
 TARCAN.JPG│ │
 TARHAND.JPG│ │
 Tarkam.jpg│ │
 verbal.jpg│ │
 vercen.jpg│ │
 verlight.jpg│ │
 vermer.jpg│ │
 zonamoe.jpg│ │
 zonbar.jpg│ │
 zonswamp.JPG│ │
 Zonwolf.jpg│ │
 │ │
 gafs for release│ └───
 loadingc.pcx│ │
 │ │
 WeaponPic│ └───
 deathswordpu.jpg│
 deathswordsb.jpg│
 deathswordsbh.jpg│
 FireBallGPU.jpg│
 FireBallGSB.jpg│
 FireBallGSBh.jpg│
 GrenadeConcussionPU.jpg│
 GrenadeConcussionSB.jpg│
 GrenadeConcussionSBh.jpg│
 GrenadeExplosivePU.jpg│
 GrenadeExplosiveSB.jpg│
 GrenadeExplosiveSBh.jpg│
 GrenadeIncendiaryPU.jpg│
 GrenadeIncendiarySB.jpg│
 GrenadeIncendiarySBh.jpg│
 LightHouseStunPU.jpg│
 LightHouseStunSB.jpg│
 LightHouseStunSBh.jpg│
 │

bitmaps└───
 initscreen.pcx│
 │

CanBuild└───
 arabuild│ └───
 araat.tdf│ │
 aracastl.tdf│ │
 arakeep.tdf│ │
 aralode.tdf│ │

 arassh.tdf│ │
 aratre.tdf│ │
 arawall.tdf│ │
 arawar.tdf│ │
 │ │
 AraCastl│ └───
 AraBow.tdf│ │
 AraBroad.tdf│ │
 AraBuild.tdf│ │
 AraCan.tdf│ │
 AraPal.tdf│ │
 AraPries.tdf│ │
 AraSiege.tdf│ │
 AraSmith.tdf│ │
 AraSpy.tdf│ │

 │ │
 AraFly│ └───
 AraAt.tdf│ │
 AraCastl.tdf│ │
 AraKeep.tdf│ │
 AraLode.tdf│ │
 Arassh.tdf│ │
 AraTre.tdf│ │
 AraWall.tdf│ │
 ARAWAR.TDF│ │
 │ │
 arakeep│ └───
 araarch.tdf│ │
 arabuild.tdf│ │
 arafast.tdf│ │
 araknigh.tdf│ │
 arapult.tdf│ │
 arasword.tdf│ │
 │ │
 araking│ └───
 araat.tdf│ │
 aragod.tdf│ │
 arakeep.tdf│ │
 aralode.tdf│ │
 arangate.tdf│ │
 aratrans.tdf│ │
 arawall.tdf│ │
 │ │
 AraPries│ └───
 AraDrag.tdf│ │
 AraFly.tdf│ │
 ARAGREN.TDF│ │
 AraMana.tdf│ │
 │ │
 tarcastl│ └───
 tarblack.tdf│ │
 targarg.tdf│ │
 tarship.tdf│ │
 tartb.tdf│ │
 tartroop.tdf│ │
 tarzom.tdf│ │
 │ │
 TarDung│ └───
 TarArch.tdf│ │
 TarBeak.tdf│ │
 TarCan.tdf│ │
 TarFire.tdf│ │
 TarHand.tdf│ │
 TarTb.tdf│ │
 TarWitch.tdf│ │
 │ │
 TarHell│ └───
 TarDemon.tdf│ │
 TARKAM.TDF│ │
 TarKnigh.tdf│ │
 TarLich.tdf│ │
 TarMage.tdf│ │

 TarMind.tdf│ │
 TarPries.tdf│ │
 TarSpout.tdf│ │
 TarTb.tdf│ │
 │ │
 tarnecro│ └───
 tarcage.tdf│ │
 tarcastl.tdf│ │
 tardung.tdf│ │
 targod.tdf│ │
 tarhell.tdf│ │
 tarlode.tdf│ │
 tarngate.tdf│ │
 tarwall.tdf│ │
 │ │
 tarprie2│ └───
 npctemp.tdf│ │
 │ │
 tarpries│ └───
 tarang.tdf│ │
 tardrag.tdf│ │
 tarmana.tdf│ │
 │ │
 tartb│ └───
 tarcage.tdf│ │
 tarcastl.tdf│ │
 tardung.tdf│ │
 tarhell.tdf│ │
 tarlode.tdf│ │
 tarsh.tdf│ │
 tarwall.tdf│ │
 │ │
 verasy│ └───
 verflag.tdf│ │
 verharp.tdf│ │
 verman.tdf│ │
 verscout.tdf│ │
 vertrans.tdf│ │
 vertre.tdf│ │
 │ │
 vercastl│ └───
 verball.tdf│ │
 verbers.tdf│ │
 vercen.tdf│ │
 vercrus.tdf│ │
 verknigh.tdf│ │
 verliege.tdf│ │
 verlihr.tdf│ │
 vermusk.tdf│ │
 │ │
 verflag│ └───
 verasy.tdf│ │
 verfltwr.tdf│ │
 verkeep.tdf│ │
 verlode.tdf│ │
 │ │
 VerKeep│ └───
 VerArch.tdf│ │
 VerLiege.tdf│ │
 VerMer.tdf│ │
 Verpar.tdf│ │
 VerPult.tdf│ │
 VerSword.tdf│ │
 │ │
 VerLiege│ └───
 VERASY.TDF│ │
 VerAt.TDF│ │
 VerCastl.TDF│ │
 VerKeep.TDF│ │
 VerLight.tdf│ │
 VerLode.TDF│ │
 VerMort.tdf│ │
 VerTower.TDF│ │

 VerWall.tdf│ │
 │ │
 verlihr│ └───
 verbal.tdf│ │
 verdrag.tdf│ │
 vermana.tdf│ │
 verpill.tdf│ │
 │ │
 vermage│ └───
 verasy.tdf│ │
 verat.tdf│ │
 vergod.tdf│ │
 verkeep.tdf│ │
 verlode.tdf│ │
 verngate.tdf│ │
 verwall.tdf│ │
 │ │
 ZonHand│ └───
 ZonBat.tdf│ │
 ZonFire.tdf│ │
 ZonGob.tdf│ │
 ZonLode.tdf│ │
 ZonSwamp.TDF│ │
 ZONTER.TDF│ │
 ZonTrain.tdf│ │
 ZonTroll.tdf│ │
 │ │
 zonhunt│ └───
 zonfire.tdf│ │
 zonglyph.tdf│ │
 zongod.tdf│ │
 zonhand.tdf│ │
 zonlode.tdf│ │
 │ │
 zonhurt│ └───
 zonfire.tdf│ │
 zonglyph.tdf│ │
 zonhand.tdf│ │
 zonlode.tdf│ │
 │ │
 zonlord│ └───
 zondrake.tdf│ │
 zonflies.tdf│ │
 zongiant.tdf│ │
 zonlode.tdf│ │
 zonorc.tdf│ │
 zonroc.tdf│ │
 zonsham.tdf│ │
 zontrain.tdf│ │
 │ │
 zonsham│ └───
 zonamoe.tdf│ │
 zonbar.tdf│ │
 zondrag.tdf│ │
 zonmana.tdf│ │
 │ │
 ZonTrain│ └───
 ZONBASIL.TDF│
 ZONGLYPH.TDF│
 ZONGRYP.TDF│
 ZONHAND.TDF│
 ZONHARP.TDF│
 ZONKRAK.TDF│
 ZONLODE.TDF│
 ZONLORD.TDF│
 ZONWOLF.TDF│
 │

CanBuildCB└───
 AraBuild│ └───
 AraAt.tdf│ │
 AraCastl.tdf│ │
 AraKeep.tdf│ │
 ARALODE.TDF│ │

 ARASSH.TDF│ │
 ARATRE.TDF│ │
 AraWall.tdf│ │
 ARAWAR.TDF│ │
 │ │
 AraCastl│ └───
 AraBow.tdf│ │
 ARABROAD.TDF│ │
 AraBuild.tdf│ │
 ARACAN.TDF│ │
 AraGren.tdf│ │
 ARAPAL.TDF│ │
 AraPries.tdf│ │
 AraSiege.tdf│ │
 ARASMITH.TDF│ │
 ARASPY.TDF│ │
 │ │
 AraFly│ └───
 ARAAT.TDF│ │
 ARACASTL.TDF│ │
 ARAKEEP.TDF│ │
 ARALODE.TDF│ │
 AraSiege.tdf│ │
 ARASSH.TDF│ │
 ARATRE.TDF│ │
 ARAWALL.TDF│ │
 ARAWAR.TDF│ │
 │ │
 AraKeep│ └───
 ARAARCH.TDF│ │
 AraBuild.tdf│ │
 AraFast.tdf│ │
 AraKnigh.tdf│ │
 AraPult.tdf│ │
 Arasword.tdf│ │
 │ │
 AraKing│ └───
 ARAAT.TDF│ │
 ARAKEEP.TDF│ │
 AraLode.TDF│ │
 AraNGate.TDF│ │
 ARATRANS.TDF│ │
 AraWall.TDF│ │
 │ │
 AraPries│ └───
 AraDrag.tdf│ │
 AraFly.tdf│ │
 AraGod.TDF│ │
 AraMana.tdf│ │
 │ │
 AraTrans│ └───
 ARAARCH.TDF│ │
 AraFast.tdf│ │
 Arasword.tdf│ │
 │ │
 TarCastl│ └───
 TARBLACK.TDF│ │
 TarGarg.tdf│ │
 TARSHIP.TDF│ │
 TarTb.tdf│ │
 TARTROOP.TDF│ │
 TarZom.tdf│ │
 │ │
 TarDung│ └───
 TarArch.tdf│ │
 TARBEAK.TDF│ │
 TarCan.tdf│ │
 TarFire.tdf│ │
 TarHand.tdf│ │
 TarTb.tdf│ │
 TARWITCH.TDF│ │
 │ │
 TarHell│ └───

 TARDEMON.TDF│ │
 TARKAM.TDF│ │
 TarKnigh.tdf│ │
 TARLICH.TDF│ │
 TARMAGE.TDF│ │
 TARMIND.TDF│ │
 TarPries.tdf│ │
 TARSPOUT.TDF│ │
 TarTb.tdf│ │
 │ │
 TarNecro│ └───
 TarCage.tdf│ │
 TarCastl.tdf│ │
 TarDung.tdf│ │
 TarHell.tdf│ │
 TARLODE.TDF│ │
 TARNGATE.TDF│ │
 TarWall.tdf│ │
 │ │
 TarPrie2│ └───
 NPCTEMP.TDF│ │
 │ │
 TarPries│ └───
 TARANG.TDF│ │
 TarDrag.tdf│ │
 TARGOD.TDF│ │
 TarMana.tdf│ │
 │ │
 TarTb│ └───
 TarCage.tdf│ │
 TarCastl.tdf│ │
 TarDung.tdf│ │
 TarHell.tdf│ │
 TarLode.tdf│ │
 TarSh.tdf│ │
 TarWall.tdf│ │
 │ │
 VERASY│ └───
 VerFlag.tdf│ │
 VerHarp.tdf│ │
 VERMAN.TDF│ │
 VERSCOUT.TDF│ │
 VERTRANS.TDF│ │
 VERTRE.TDF│ │
 │ │
 VerCastl│ └───
 VERBAL.TDF│ │
 VERBALL.TDF│ │
 VERBERS.TDF│ │
 VERCEN.TDF│ │
 VERCRUS.TDF│ │
 VERKNIGH.TDF│ │
 VerLiege.tdf│ │
 VerLihr.tdf│ │
 VERMUSK.TDF│ │
 │ │
 VerFlag│ └───
 VERASY.TDF│ │
 VERFLTWR.TDF│ │
 VerKeep.tdf│ │
 VerLight.tdf│ │
 Verlode.tdf│ │
 │ │
 VerKeep│ └───
 VERARCH.TDF│ │
 VerLiege.tdf│ │
 VerMer.tdf│ │
 Verpar.tdf│ │
 VerPult.tdf│ │
 VERSWORD.TDF│ │
 │ │
 VerLiege│ └───
 VERASY.TDF│ │

 VERAT.TDF│ │
 VerCastl.TDF│ │
 VerKeep.TDF│ │
 VerLight.tdf│ │
 VERLODE.TDF│ │
 VERMORT.TDF│ │
 VerTower.TDF│ │
 VerWall.tdf│ │
 │ │
 VerLihr│ └───
 VerDrag.tdf│ │
 VERGOD.TDF│ │
 VerMana.tdf│ │
 VERPILL.TDF│ │
 │ │
 VerMage│ └───
 VERASY.TDF│ │
 VERAT.TDF│ │
 VerKeep.tdf│ │
 VERLODE.TDF│ │
 VERNGATE.TDF│ │
 VerWall.tdf│ │
 │ │
 ZonHand│ └───
 ZONBAT.TDF│ │
 ZonFire.tdf│ │
 ZONGOB.TDF│ │
 ZONLODE.TDF│ │
 ZONTER.TDF│ │
 ZonTrain.tdf│ │
 ZONTROLL.TDF│ │
 │ │
 ZonHunt│ └───
 ZonFire.tdf│ │
 ZonGlyph.tdf│ │
 ZONHAND.TDF│ │
 ZonLode.tdf│ │
 │ │
 ZonHurt│ └───
 ZonFire.tdf│ │
 ZonGlyph.tdf│ │
 ZONHAND.TDF│ │
 ZonLode.tdf│ │
 │ │
 ZonLord│ └───
 ZONDRAKE.TDF│ │
 ZonFlies.tdf│ │
 ZONGIANT.TDF│ │
 ZonLode.tdf│ │
 ZONORC.TDF│ │
 ZonRoc.tdf│ │
 ZonSham.tdf│ │
 ZONTRAIN.TDF│ │
 │ │
 ZonSham│ └───
 ZonDrag.tdf│ │
 ZONGOD.TDF│ │
 ZonMana.tdf│ │
 │ │
 ZonTrain│ └───
 ZonAmoe.tdf│
 ZonBar.tdf│
 ZonBasil.tdf│
 ZonGlyph.tdf│
 ZONGRYP.TDF│
 ZONHAND.TDF│
 ZonHarp.tdf│
 ZonKrak.tdf│
 ZonLode.tdf│
 ZonLord.tdf│
 ZonSpide.tdf│
 ZonSwamp.TDF│
 ZonWolf.tdf│

 │
Features└───

 All Worlds│ └───
 araarch_frozen.tdf│ │
 araarch_stone.tdf│ │
 arabow_frozen.tdf│ │
 arabow_stone.tdf│ │
 arabroad_frozen.tdf│ │
 arabroad_stone.tdf│ │
 arabuild_frozen.tdf│ │
 arabuild_stone.tdf│ │
 aracan_stone.tdf│ │
 aradrag_stone.tdf│ │
 arafast_stone.tdf│ │
 arafly_stone.tdf│ │
 aragren_frozen.tdf│ │
 aragren_stone.tdf│ │
 araknigh_stone.tdf│ │
 arapal_stone.tdf│ │
 araprie2_frozen.tdf│ │
 araprie2_stone.tdf│ │
 arapries_frozen.tdf│ │
 arapries_stone.tdf│ │
 arapult_frozen.tdf│ │
 arapult_stone.tdf│ │
 arasmith_frozen.tdf│ │
 arasmith_stone.tdf│ │
 araspy_frozen.tdf│ │
 araspy_stone.tdf│ │
 arasword_stone.tdf│ │
 aratre_stone.tdf│ │
 arawall.tdf│ │
 lifbird_stone.tdf│ │
 lifcow_frozen.tdf│ │
 lifcow_stone.tdf│ │
 lifdeer2_frozen.tdf│ │
 lifdeer2_stone.tdf│ │
 lifdeer_frozen.tdf│ │
 lifdeer_stone.tdf│ │
 lifsaber_frozen.tdf│ │
 lifsaber_stone.tdf│ │
 lifwolf_frozen.tdf│ │
 lifwolf_stone.tdf│ │
 monboar_frozen.tdf│ │
 monboar_stone.tdf│ │
 mondev_frozen.tdf│ │
 mondev_stone.tdf│ │
 monghoul_frozen.tdf│ │
 monghoul_stone.tdf│ │
 monpiran_stone.tdf│ │
 npcalch_frozen.tdf│ │
 npcalch_stone.tdf│ │
 npcayla_frozen.tdf│ │
 npcayla_stone.tdf│ │
 npcbeg2_frozen.tdf│ │
 npcbeg2_stone.tdf│ │
 npcbeg_frozen.tdf│ │
 npcbeg_stone.tdf│ │
 npcburi_stone.tdf│ │
 npcdern_stone.tdf│ │
 npcduma_stone.tdf│ │
 npcemen_stone.tdf│ │
 npcfarm2_frozen.tdf│ │
 npcfarm2_stone.tdf│ │
 npcfarm_frozen.tdf│ │
 npcfarm_stone.tdf│ │
 npcheket_frozen.tdf│ │
 npcheket_stone.tdf│ │
 npchunt_frozen.tdf│ │
 npchunt_stone.tdf│ │
 npcjor2_stone.tdf│ │
 npcjor_stone.tdf│ │
 npcleim_frozen.tdf│ │

 npcleim_stone.tdf│ │
 npcpeas2_frozen.tdf│ │
 npcpeas2_stone.tdf│ │
 npcpeas_frozen.tdf│ │
 npcpeas_stone.tdf│ │
 npcpow1_frozen.tdf│ │
 npcpow1_stone.tdf│ │
 npcpow2_frozen.tdf│ │
 npcpow2_stone.tdf│ │
 npcref_frozen.tdf│ │
 npcref_stone.tdf│ │
 npcsail_frozen.tdf│ │
 npcsail_stone.tdf│ │
 npcshop_frozen.tdf│ │
 npcshop_stone.tdf│ │
 npctribe_frozen.tdf│ │
 npctribe_stone.tdf│ │
 npcwagon_stone.tdf│ │
 tararch_frozen.tdf│ │
 tarbeak_stone.tdf│ │
 tarblack_stone.tdf│ │
 tarcan_frozen.tdf│ │
 tarcan_stone.tdf│ │
 tardemon_frozen.tdf│ │
 tardemon_stone.tdf│ │
 tardrag_stone.tdf│ │
 tarfire_frozen.tdf│ │
 tarfire_stone.tdf│ │
 targarg_stone.tdf│ │
 tarhand_stone.tdf│ │
 tarkam_frozen.tdf│ │
 tarkam_stone.tdf│ │
 tarknigh_stone.tdf│ │
 tarlich_frozen.tdf│ │
 tarmage_frozen.tdf│ │
 tarmage_stone.tdf│ │
 tarmind_frozen.tdf│ │
 tarmind_stone.tdf│ │
 tarprie2_stone.tdf│ │
 tarpries_stone.tdf│ │
 tarspout_frozen.tdf│ │
 tarspout_stone.tdf│ │
 tartb_frozen.tdf│ │
 tartb_stone.tdf│ │
 tartroop_stone.tdf│ │
 tarwall.tdf│ │
 tarwitch_frozen.tdf│ │
 tarwitch_stone.tdf│ │
 tarzom_frozen.tdf│ │
 verarch_frozen.tdf│ │
 verarch_stone.tdf│ │
 verbal_frozen.tdf│ │
 verbal_stone.tdf│ │
 verbers_frozen.tdf│ │
 verbers_stone.tdf│ │
 vercen_frozen.tdf│ │
 vercen_stone.tdf│ │
 vercrus_stone.tdf│ │
 verdrag_stone.tdf│ │
 verknigh_stone.tdf│ │
 verliege_frozen.tdf│ │
 verliege_stone.tdf│ │
 verlihr_frozen.tdf│ │
 verlihr_stone.tdf│ │
 vermer_frozen.tdf│ │
 vermer_stone.tdf│ │
 vermort_stone.tdf│ │
 vermusk_frozen.tdf│ │
 vermusk_stone.tdf│ │
 verpar_stone.tdf│ │
 verpult_frozen.tdf│ │
 verpult_stone.tdf│ │
 versword_stone.tdf│ │

 verwall.tdf│ │
 zonamoe_frozen.tdf│ │
 zonamoe_stone.tdf│ │
 zonbar_stone.tdf│ │
 zonbasil_frozen.tdf│ │
 zonbat_stone.tdf│ │
 zondrag_stone.tdf│ │
 zondrake_stone.tdf│ │
 zonflies_stone.tdf│ │
 zongob_frozen.tdf│ │
 zongob_stone.tdf│ │
 zongryp_stone.tdf│ │
 zonhand_frozen.tdf│ │
 zonhand_stone.tdf│ │
 zonharp_stone.tdf│ │
 zonkrak_stone.tdf│ │
 zonlord_frozen.tdf│ │
 zonlord_stone.tdf│ │
 zonorc_frozen.tdf│ │
 zonorc_stone.tdf│ │
 zonroc_stone.tdf│ │
 zonsham_frozen.tdf│ │
 zonsham_stone.tdf│ │
 zonswamp_frozen.tdf│ │
 zonswamp_stone.tdf│ │
 zonter_frozen.tdf│ │
 zonter_stone.tdf│ │
 zontrain_frozen.tdf│ │
 zontrain_stone.tdf│ │
 zontroll_stone.tdf│ │
 zonwolf_frozen.tdf│ │
 zonwolf_stone.tdf│ │
 │ │
 Corpses│ └───
 arafly_dead.tdf│
 aragren_dead.tdf│
 arapult_dead.tdf│
 arasiege_dead.tdf│
 aratrans_dead.tdf│
 monpiran_dead.tdf│
 tarcan_dead.tdf│
 tarhand_dead.tdf│
 verbal_dead.tdf│
 vercen_dead.tdf│
 verlight_dead.tdf│
 vermer_dead.tdf│
 zonamoe_dead.tdf│
 zonbar_dead.tdf│
 zonswamp_dead.tdf│
 zonwolf_dead.tdf│
 │

fonts└───
 bodfontbody.gaf│
 bodfontbody.pcx│
 bodfontbody.tdf│
 bodfontdecor.gaf│
 bodfontdecor.pcx│
 boneyard_heading.gaf│
 boneyard_heading.pcx│
 boneyard_heading.tdf│
 bywarconsole.gaf│
 b_times new roman (100).gaf│
 b_times new roman (100).pcx│
 b_times new roman (100).tdf│
 b_times new roman (100b).gaf│
 b_times new roman (100b).pcx│
 b_times new roman (100b).tdf│
 decorativesm.gaf│
 decorativesm.pcx│
 decorativesm.tdf│
 font48.gaf│
 font48.pcx│
 font48.tdf│

 ig_times new roman (100).gaf│
 ig_times new roman (100).pcx│
 ig_times new roman (100).tdf│
 lombardic (cd).gaf│
 lombardic (cd).pcx│
 lombardic (cd).tdf│
 roman10.fnt│
 times new roman (100).gaf│
 times new roman (100).tdf│
 times new roman (100b).gaf│
 times new roman (100b).tdf│
 │

GameData└───
 MOVEINFO.TDF│ │
 │ │
 effects│ └───
 effects.tdf│ │
 │ │
 explosions│ └───
 explosions.tdf│ │
 │ │
 soundclasses│ └───
 AraFly.tdf│
 AraGren.tdf│
 AraSiege.tdf│
 aratrans.tdf│
 soundclasses.tdf│
 tarang.tdf│
 TarCan.tdf│
 TarHand.tdf│
 TarKam.tdf│
 verbal.tdf│
 vercen.tdf│
 Verlight.tdf│
 VerMer.tdf│
 zonamoe.tdf│
 zonbar.tdf│
 ZonSwamp.tdf│
 ZonWolf.tdf│
 │

guis└───
 battlemenumulti.gui│
 battlemenusingle.gui│
 creingame.gui│
 creingameold.gui│
 creingametest.gui│
 creonigold.gui│
 hostgame.gui│
 mainmenu1.gui│
 playercampaigndialogue.gui│
 selectgame.gui│
 victorycre.gui│
 visualoptions1.gui│
 │

Objects3D└───
 AraBolt.3do│
 AraFly.3do│
 arafly_dead.3do│
 aragren.3do│
 AraGren1.3do│
 AraGren1_vet.3do│
 aragren_dead.3do│
 AraSiege.3do│
 arasiege_dead.3do│
 aratrans.3do│
 aratrans_dead.3do│
 tarang.3do│
 tarcan.3do│
 tarcan_dead.3do│
 tarhand.3do│
 tarhand_dead.3do│
 tarkam.3do│
 verbal.3do│

 verbal1.3do│
 verbal1_vet.3do│
 verbal_dead.3do│
 vercen.3do│
 vercen_dead.3do│
 verlight.3do│
 VerLight1.3do│
 VerLight2.3do│
 VerLight3.3do│
 verlight_dead.3do│
 vermer.3do│
 vermer_dead.3do│
 zonamoe.3do│
 zonamoe_dead.3do│
 zonbar.3do│
 zonbar_dead.3do│
 zonswamp.3do│
 zonswamp_dead.3do│
 zonwolf.3do│
 ZonWolf2.3do│
 zonwolf_dead.3do│
 │

Scripts└───
 ARAFLY.COB│
 ARAGREN.COB│
 ARASIEGE.COB│
 aratrans.cob│
 tarang.cob│
 TARCAN.COB│
 TARHAND.COB│
 TARKAM.COB│
 verbal.cob│
 vercen.cob│
 VERLIGHT.COB│
 VERMER.COB│
 zonamoe.cob│
 zonbar.cob│
 ZONSWAMP.COB│
 ZONWOLF.COB│
 ZONWOLF2.COB│
 │

Sounds└───
 ARAFLYSEL1.wav│
 ARAGRENDIE1.wav│
 ARAGRENMOV1.wav│
 ARAGRENSEL1.wav│
 ARASIEGEDIE1.wav│
 ARASIEGEMOV1.WAV│
 ARASIEGESEL1.WAV│
 aratransmov1.wav│
 aratranssel1.wav│
 lightbeam.wav│
 tarangdie1.wav│
 tarangmov1.wav│
 tarangsel1.wav│
 TARCANDIE1.wav│
 TARCANFIRE.wav│
 TARCANMOV1.wav│
 TARCANSEL1.wav│
 TARHANDDIE1.WAV│
 TARHANDMOV1.WAV│
 TARHANDSEL1.WAV│
 TARKAMDIE1.wav│
 TARKAMMOV1.wav│
 TARKAMSEL1.wav│
 verbaldie1.wav│
 verbalmov1.wav│
 verbalsel1.wav│
 vercendie1.wav│
 vercenmov1.wav│
 vercensel1.wav│
 VERLIGHTDIE1.wav│
 VERLIGHTSEL1.wav│

 VERMERDIE1.wav│
 VERMERMOV1.wav│
 VERMERSEL1.wav│
 zonamoedie1.wav│
 zonamoemov1.wav│
 zonamoesel1.wav│
 zonbarsel1.wav│
 ZONSWAMPDIE1.wav│
 ZONSWAMPMOV1.wav│
 ZONSWAMPSEL1.wav│
 ZONWOLFDIE1.wav│
 ZONWOLFMOV1.wav│
 ZONWOLFSEL1.wav│
 │

Sounds-French└───
 ARAGRENMOV1.WAV│
 ARAGRENSEL1.WAV│
 TARHANDSEL1.WAV│
 VERMERDIE1.WAV│
 VERMERMOV1.WAV│
 VERMERSEL1.WAV│
 │

Sounds-German└───
 ARAGRENMOV1.WAV│
 ARAGRENSEL1.WAV│
 TARHANDSEL1.WAV│
 VERMERDIE1.WAV│
 VERMERMOV1.WAV│
 VERMERSEL1.WAV│
 │

Sounds-Italian└───
 ARAGRENMOV1.wav│
 ARAGRENSEL1.wav│
 TARHANDSEL1.wav│
 VERMERDIE1.wav│
 VERMERMOV1.wav│
 VERMERSEL1.wav│
 │

Sounds-Spanish└───
 ARAGRENMOV1.wav│
 TARHANDMOV1.WAV│
 TARHANDSEL1.WAV│
 VERMERDIE1.WAV│
 VERMERMOV1.WAV│
 VERMERSEL1.WAV│
 │

Translate└───
 arafly.tdf│
 aragren.tdf│
 arasiege.tdf│
 aratrans.tdf│
 boneyards.tdf│
 Crusades.tdf│
 customkeys.tdf│
 death.tdf│
 features.tdf│
 guiexpansion.tdf│
 gui_text.tdf│
 leaderboard.tdf│
 load_screen.tdf│
 maps.tdf│
 messages.tdf│
 missions.tdf│
 networking.tdf│
 npcs.tdf│
 shortcutkeys.tdf│
 startup.tdf│
 tarcan.tdf│
 tarhand.tdf│
 unitchatter.tdf│
 unitmissions.tdf│
 unitnames.tdf│
 verbal.tdf│

 vercent.tdf│
 verlight.tdf│
 vermer.tdf│
 zonamoe.tdf│
 zonbar.tdf│
 zonswamp.tdf│
 zonwolf.tdf│
 │

units└───
 araarch.fbi│
 araat.fbi│
 arabow.fbi│
 arabroad.fbi│
 arabuild.fbi│
 aracan.fbi│
 aracastl.fbi│
 aradrag.fbi│
 arafast.fbi│
 arafly.fbi│
 aragod.fbi│
 aragren.fbi│
 arakeep.fbi│
 araking.fbi│
 araknigh.fbi│
 aralode.fbi│
 aramana.fbi│
 arangate.fbi│
 aranull.fbi│
 arapal.fbi│
 araprie2.fbi│
 arapries.fbi│
 arapult.fbi│
 arasiege.fbi│
 arasmith.fbi│
 araspy.fbi│
 arassh.fbi│
 arasword.fbi│
 aratrans.fbi│
 aratre.fbi│
 arawall.fbi│
 arawar.fbi│
 lifbird.fbi│
 lifcow.fbi│
 lifdeer.fbi│
 lifdeer2.fbi│
 lifsaber.fbi│
 lifwolf.fbi│
 monboar.fbi│
 mondev.fbi│
 monghoul.fbi│
 monpiran.fbi│
 npcalch.fbi│
 npcayla.fbi│
 npcbeg.fbi│
 npcbeg2.fbi│
 npcbotl.fbi│
 npcburi.fbi│
 npcdern.fbi│
 npcduma.fbi│
 npcemen.fbi│
 npcfarm.fbi│
 npcfarm2.fbi│
 npcflag.fbi│
 npcheket.fbi│
 npchunt.fbi│
 npcjor.fbi│
 npcjor2.fbi│
 npcleim.fbi│
 npcpeas.fbi│
 npcpeas2.fbi│
 npcpow1.fbi│
 npcpow2.fbi│
 npcref.fbi│

 npcrixx.fbi│
 npcsail.fbi│
 npcshop.fbi│
 npctemp.fbi│
 npctemp2.fbi│
 npcthesh.fbi│
 npctribe.fbi│
 npcwagon.fbi│
 tarang.fbi│
 tararch.fbi│
 tarbeak.fbi│
 tarblack.fbi│
 tarcage.fbi│
 tarcan.fbi│
 tarcastl.fbi│
 tardemon.fbi│
 tardrag.fbi│
 tardung.fbi│
 tarfire.fbi│
 targarg.fbi│
 targod.fbi│
 tarhand.fbi│
 tarhell.fbi│
 tarkam.fbi│
 tarknigh.fbi│
 tarlich.fbi│
 tarlode.fbi│
 tarmage.fbi│
 tarmana.fbi│
 tarmind.fbi│
 tarnecro.fbi│
 tarngate.fbi│
 tarprie2.fbi│
 tarpries.fbi│
 tarsh.fbi│
 tarship.fbi│
 tarspout.fbi│
 tartb.fbi│
 tartroop.fbi│
 tarwall.fbi│
 tarwitch.fbi│
 tarzom.fbi│
 verarch.fbi│
 verasy.fbi│
 verat.fbi│
 verbal.fbi│
 verball.fbi│
 verbers.fbi│
 vercastl.fbi│
 vercen.fbi│
 vercrus.fbi│
 verdrag.fbi│
 verflag.fbi│
 verfltwr.fbi│
 vergod.fbi│
 verharp.fbi│
 verkeep.fbi│
 verknigh.fbi│
 verliege.fbi│
 verlight.fbi│
 verlihr.fbi│
 verlode.fbi│
 vermage.fbi│
 verman.fbi│
 vermana.fbi│
 vermer.fbi│
 vermort.fbi│
 vermusk.fbi│
 verngate.fbi│
 verpar.fbi│
 verpill.fbi│
 verpult.fbi│
 verscout.fbi│

 versword.fbi│
 vertower.fbi│
 vertrans.fbi│
 vertre.fbi│
 verwall.fbi│
 zonamoe.fbi│
 zonbar.fbi│
 zonbasil.fbi│
 zonbat.fbi│
 zondrag.fbi│
 zondrake.fbi│
 zonfire.fbi│
 zonflies.fbi│
 zongiant.fbi│
 zonglyph.fbi│
 zongob.fbi│
 zongod.fbi│
 zongryp.fbi│
 zonhand.fbi│
 zonharp.fbi│
 zonhunt.fbi│
 zonhurt.fbi│
 zonkrak.fbi│
 zonlode.fbi│
 zonlord.fbi│
 zonmana.fbi│
 zonorc.fbi│
 zonroc.fbi│
 zonsham.fbi│
 zonswamp.fbi│
 zonter.fbi│
 zontrain.fbi│
 zontroll.fbi│
 zonwolf.fbi│
 zonwolf2.fbi│
 │

unitscb└───
 araarch.fbi
 araat.fbi
 arabow.fbi
 arabroad.fbi
 arabuild.fbi
 aracan.fbi
 aracastl.fbi
 aradrag.fbi
 arafast.fbi
 arafly.fbi
 aragod.fbi
 aragren.fbi
 arakeep.fbi
 araking.fbi
 araknigh.fbi
 aralode.fbi
 aramana.fbi
 arangate.fbi
 aranull.fbi
 arapal.fbi
 araprie2.fbi
 arapries.fbi
 arapult.fbi
 arasiege.fbi
 arasmith.fbi
 araspy.fbi
 arassh.fbi
 arasword.fbi
 aratrans.fbi
 aratre.fbi
 arawall.fbi
 arawar.fbi
 lifbird.fbi
 lifcow.fbi
 lifdeer.fbi
 lifdeer2.fbi

 lifsaber.fbi
 lifwolf.fbi
 monboar.fbi
 mondev.fbi
 monghoul.fbi
 monpiran.fbi
 npcalch.fbi
 npcayla.fbi
 npcbeg.fbi
 npcbeg2.fbi
 npcbotl.fbi
 npcburi.fbi
 npcdern.fbi
 npcduma.fbi
 npcemen.fbi
 npcfarm.fbi
 npcfarm2.fbi
 npcflag.fbi
 npcheket.fbi
 npchunt.fbi
 npcjor.fbi
 npcjor2.fbi
 npcleim.fbi
 npcpeas.fbi
 npcpeas2.fbi
 npcpow1.fbi
 npcpow2.fbi
 npcref.fbi
 npcrixx.fbi
 npcsail.fbi
 npcshop.fbi
 npctemp.fbi
 npctemp2.fbi
 npcthesh.fbi
 npctribe.fbi
 npcwagon.fbi
 tarang.fbi
 tararch.fbi
 tarbeak.fbi
 tarblack.fbi
 tarcage.fbi
 tarcan.fbi
 tarcastl.fbi
 tardemon.fbi
 tardrag.fbi
 tardung.fbi
 tarfire.fbi
 targarg.fbi
 targod.fbi
 tarhand.fbi
 tarhell.fbi
 tarkam.fbi
 tarknigh.fbi
 tarlich.fbi
 tarlode.fbi
 tarmage.fbi
 tarmana.fbi
 tarmind.fbi
 tarnecro.fbi
 tarngate.fbi
 tarprie2.fbi
 tarpries.fbi
 tarsh.fbi
 tarship.fbi
 tarspout.fbi
 tartb.fbi
 tartroop.fbi
 tarwall.fbi
 tarwitch.fbi
 tarzom.fbi
 verarch.fbi
 verasy.fbi
 verat.fbi

 verbal.fbi
 verball.fbi
 verbers.fbi
 vercastl.fbi
 vercen.fbi
 vercrus.fbi
 verdrag.fbi
 verflag.fbi
 verfltwr.fbi
 vergod.fbi
 verharp.fbi
 verkeep.fbi
 verknigh.fbi
 verliege.fbi
 verlight.fbi
 verlihr.fbi
 verlode.fbi
 vermage.fbi
 verman.fbi
 vermana.fbi
 vermer.fbi
 vermort.fbi
 vermusk.fbi
 verngate.fbi
 verpar.fbi
 verpill.fbi
 verpult.fbi
 verscout.fbi
 versword.fbi
 vertower.fbi
 vertrans.fbi
 vertre.fbi
 verwall.fbi
 zonamoe.fbi
 zonbar.fbi
 zonbasil.fbi
 zonbat.fbi
 zondrag.fbi
 zondrake.fbi
 zonfire.fbi
 zonflies.fbi
 zongiant.fbi
 zonglyph.fbi
 zongob.fbi
 zongod.fbi
 zongryp.fbi
 zonhand.fbi
 zonharp.fbi
 zonhunt.fbi
 zonhurt.fbi
 zonkrak.fbi
 zonlode.fbi
 zonlord.fbi
 zonmana.fbi
 zonorc.fbi
 zonroc.fbi
 zonsham.fbi
 zonswamp.fbi
 zonter.fbi
 zontrain.fbi
 zontroll.fbi
 zonwolf.fbi
 zonwolf2.fbi

FBI Functions

by Hansolo

The purpose of this document is to explain the different functions
of the unit files for TAK. These files are the ones in the HAPI
compressed file, in the sub-directory /UNITS/. Their file extension is
FBI, the same as it was in TA.

The first notable differences with TAK unit files; is that they now
contain weapon data as well, which were previously in separate TDF files.
This is probably due to the fact that there are no longer a finite amount
of Weapon ID's, so any weapons can be duplicated without ID-using
difficulties.

All right then; let's get started. Commands are now listed in
alphabetical order, not that it makes any difference, but it allows
specific commands to be found easier. I will be referring to the unit
instructions ONLY - not the weapons ones, which appear in a different
section of the file. All values marked with a '(B)', are Boolean values,
where 0 = negative, 1 = positive.

FBI TABLE
acceleration = 10; This is the rate at which a unit will

accelerate

activatewhenbuilt Whether the unit is active (turned on), when
first built. (B?)

admultiplier = ?; Unknown

animatetype = ?; Unknown

attackrunlength = 150; How far the flying unit will move, before
turning around for another pass.

attractsgods = 1; This unit has to be built for your side's
god to appear. (Pre-3.0???)

bankscale = 0.4; Not sure, to do with the 'banking' of flying
units.

bloodcolor1 = 160 35 0; I'm not sure about the significance of the 3
different colors, but they are the RGB
values
of the blood. (RED BLUE GREEN, 0-255).

bloodcolor2 = 170 40 0;
bloodcolor3 = 180 30 5;

bmcode = 1; Unknown

bodytype = flesh; I presume that this will generate the
appropriate sounds and damage; yet to be
confirmed.

brakerate = 10; This is the rate at which a unit will
decelerate.

Buildangle The angle the unit is built at, not
compulsory.

buildcost = 325; This is the cost of the unit in Mana,
replaces
the 'buildcostenergy and buildcostmetal' of
TA.

builder = 1; Whether the unit can build units. (B)

builderlimited = 1; Whether the unit can aid in other units
building. As far as I am aware, it is only
Monarchs that have a value of 0. (B)

buildtime = 125; This is the time it takes for the unit to be
built, directly linked with buildcost; ratio
determines Mana depletion.

cananimate = 1; Whether the unit can animate (turn a corpse
into a ghoul). (B)

canattack = 1; Whether the unit can attack. (B)

canbuild = 1; Not sure if this is used by the game, would
appear to have same affect as 'builder'. (B)

cancapture = 1; Whether the unit can capture. (B)

cancloak = 1; Whether the unit can cloak. (B)

canfly = 1; Whether the unit can fly. (B)

canguard = 1; Whether the unit can guard. (B)

canhover = 1; Whether the unit hovers. (B)

canload = 1; Whether the unit can load. (B)

canmove = 1; Whether the unit can move. (B)

canpatrol = 1; Whether the unit can patrol. (B)

canreclaim = 1; Whether the unit can reclaim, or clear as it
is know in game. (B)

canresurrect = 1; Whether the unit can bring units back to
life. (B)

canstop = 1; Whether the unit can stop. (B)

cantbecaptured = 1; Whether the unit cannot be captured. (B)

cantbestoned = 1; Whether the unit can be turned to stone,
similar to the cantbeparalyzed command in
TA. (B)

cantbetransported = 1; Whether the unit cannot be transported. (B)

cantransport = 1; Whether the unit can transport. (B)

category = ARA BALLISTIC
ATTACK;

This defines the categories the unit falls
into.
In this example, it is an Aramon unit (ARA),
has a ballistic weapon, and can attack. I'm
not sure how much of an effect this has on
the game, but I think it may be used by the
AI.

cloakcost = 14; How much Mana the unit uses when cloaked.

cloakcostmoving = 21; How much Mana the unit uses when cloaked and
moving.

commander = 1; Whether the unit is a commander/monarch
(used when working out if you're Monarch is
dead, not which unit you start off with;
that's in the gamedata/sidedata.tdf).

copyright = Copyright 1999
Humongous Entertainment. All
rights reserved.;

CD's little reminder who made the game. In
TA v3 and above, this line was necessary.
Yet to be confirmed whether the line is
needed, but I presume it is.

corpse = araarch_dead; The corpse that the unit uses. This refers
to the matching record in the
features/corpses/ and not the dead_3do as
may be thought.

corpseadjustx = ?; Unknown. Possibly something to do with the
corpse of the unit being a different size to
the building?

corpseadjustz = ?; Unknown. Possibly something to do with the
corpse of the unit being a different size to
the building?

cruisealt = 200; The distance from the ground the unit flies
at.

damagecategory = Human; I presume that this is related to the kind
of damage it takes (i.e. Zombies take less
damage from arrows than humans…)

defaultmissiontype =
Standby;

This defines what the unit does when it is
first built. Most (if not all) units are
Standby, with flying units using
VTOL_Standby.

description = Aramon; Not sure whether this appears in the game,
in TA it was under the name in the build
menu. It appears that this simply states
the side that the unit appears for.

economybonus = 30; Unknown. Surely something to do with

Mogrium, or Mana income, but not sure of
it's relevance.

experiencepoints = 7; The number of experience points the unit
gives its killer when killed. The bigger
and better the unit, the higher the points.
To be confirmed.

fireatwillrandom = 1; I'm not sure whether this is a Boolean value
or not. It only seems to appear in units
with ballistic weapons; and could be an
indicator of whether they will fire at enemy
before being attacked, if in defensive mode.
(B?)

floater = 1; Whether the unit floats on water. (B)

footprintx = 2; The width of the unit, used to stop
overlapping 3do's. Buildings only, mobile
unit's footprints are defined in the
movementclass.

footprintz = 2; The depth of the unit, used to stop
overlapping 3do's. Buildings only, mobile
unit's footprints are defined in the
movementclass.

gate = 1; Whether the unit is a gate. (B)

ghost = 1; Whether the unit is a ghost; and can move
through features/corpses? (B)

healtime = 0.520833333; How quickly the unit will heal. I think
that this value indicates a damage unit
recovered every half a second.

hoverattack = 1; Whether the unit hovers and attacks, or
makes sweeping runs. (B)

hoverattackaltitude = 150; I presume this is only used if the altitude
is different to 'cruisealt'. The altitude
the hover- attacking unit is from the
ground.

hoverattackdistance = 150; How far the unit hovers from it's target.

isfeature = 1; Used by the wall. Defines whether the unit
becomes a feature once built. (B)

manarechargerate = 10; How quickly the unit's Mana personal storage
regenerates.

maneuverleashlength = 500; This is how far the unit will move from it's
movement path. This is useful when
patrolling or moving in formation. This is
how far the unit will go off on a whim,
before returning to it's set course.

maxdamage = 1100; The health of a unit. Cannot be exceeded,
despite healtime.

maxslope = 15; The maximum slope the unit can be built on.
Buildings only, mobile unit's maxslopes are
defined in the movementclass.

maxmana = 1000; How much personal Mana the unit has. Cannot
be exceeded, regardless of manarechargerate.

maxvelocity = 1.25; The maximum speed of a unit. I think this
is measured in the number of in-game units
per second.

maxwaterdepth = 0; The maximum depth the unit can be built on.
Buildings only, mobile unit's maxwaterdepths
are defined in the movementclass.

mincloakdistance = 80; The distance at which cloaked units will be
spotted.

mogriumincome = 0; The amount of Mana the unit generates.

mogriumstorage = 0; The amount of Mana the unit can store.

movementclass = GROUND2; This refers to the movement classes in the
'moveinfo.tdf' in the gamedata directory.
This defines the slopes that the unit can
traverse, and the water depths. This seems
to replace the 'maxslope' and
'maxwaterdepth' from TA, and goes with the
general values defined in the TDF.

moverate1 = 8; This value is called form the script, and
I'm pretty sure it defines the speed it
hover attacking units move from side to
side.

moverate2 = 8; See moverate1.

name = Archer; The name of the unit, as it appears in the
game.

nochasecategory = FLY; The category that the unit will not chase.

noshadow = 1; Whether the unit has no shadow. (B)

notargetcategory = FLY; The category that the unit will not target.

noveteran = 1; Whether the unit cannot become a Veteran
(i.e. Gods). (B)

objectname = ARAARCH; This is the name of the unit 3do.

onoffable = 1; Whether the unit can be turned on/off. (B)

pitchscale = 1.5; Unknown.

radardistance = 550; How far the units radar extends.

roadmultiplier = 1.21; This is the value that the unit's
maxvelocity is multiplied by, when it is
travelling over roads and smooth surfaces.
(i.e. The Aramon Archer goes at a speed of
[1.21x1.25=1.5125] when travelling on
roads.)

roadmultplier = 1.21; Typo on Cavedog's part, unknown if it works
the same as roadmultiplier. Only included
for completion's sake.

shadowart = shadow03; I think that this refers to the kind of
shadow to use, but due to current Utility
incompatibilities, this is unconformable.

shadowgaf = shadows; See shadowart.

shootme = 1; Whether enemy units will target the unit.
(B)

side = ARA; This is the side the unit fights for:
ARA = Aramon
TAR = Taros
VER = Veruna
ZON = Zhon
LIF = Lifeforms
NPC = Non-Player-Characters
MON = Wandering Monsters

sightdistance = 180; How far the unit can see.

sonardistance = 100; The distance the unit's sonar extends.

soundcategory = ARAARCH; The sound category that the unit uses. This
unit therefore uses the sounds ARAARCHDIE1,
ARAARCHMOV1 and ARAARCHSEL1.

soundclass = ARAARCH; Unknown, appears to be the same as
soundcategory.

standingmoveorder = 1; What the unit's movement order is when
built. Possibly used to say whether they
are guarding, patrolling or moving, but I
can't see how it would work.

standingunitorder = 1; What the unit's order is when it is built.
I presume that (0=Attacking, 1=Defensive and
2=Passive).

stone = araarch_stone; What textures the unit uses when turned to
stone.

tedclass = Aramon; Used by the AI.

totalallowed = 1; The number of the units allowed at one time.

Can limit ultra-powerful units like the Gold
Dragon, or units with many faces, such as
the Aramon Chariot.

transmaxunits = 1; I 'think' that this value is for flying
transports only, as it appears only in the
FBI of the Zhon Roc as far as I can tell.
This is the same as 'transportcapacity' in
this case…

transportcapacity = 16; How many units the unit can transport.

transportdistance = 300; How far away the unit has to be to
load/unload.

transportsize = 9; The maximum size of a unit that can be
transported.

transportsizecapacity = 64; The total capacity in unit size that the
unit can carry. This might mean that it
cannot reach it's full unit capacity.

turninplacerate = 2400; How long it takes for the unit to turn on
the spot.

turnrate = 2400; How long it takes the unit to turn.

unitname = ARAARCH; The name of the unit's FBI, Buildpic.
Usually will match Objectname.

unitnumber = 1; 'Should' have no purpose other than for
identification. In TA v1, it defined the
unit, and could cause conflicts. TAK
allegedly has unlimited unit ID's.

unitstandorders = 0; A building's version of standingunitorders.

upright = 1; Whether the unit is upright. Affects
whether the unit will tilt on uneven
terrain. (B)

version = 1; The version of the unit. In TA, the FBI with
the higher version, overwrote one with a
lower version of the same name. Useful when
updating units in updates.

waterline = 1; Where the water comes up to on the unit.

watermultiplier = 0.81; How the unit's speed is affected in it's
waterdepth. Works in the same way as
roadmultiplier.

watermultipliser = 0.81; That's two typos for Cavedog, this is quite

blatently a mis-typed watermultiplier. Only
included for completion's sake.

weaponswitching = 1; Whether the units will switch weapons
independently (i.e. when it runs out of
Mana, it will switch to a lower weapon.)

wind = 1; I'm not sure about this one. I thought that
it may be to do with the fact that the unit
is partially propelled by the wind, seeing
that it appears in the boat's FBIs. I am
not aware of any wind in TAK though,
although it's quite possible that it is
there, but what purpose it plays is unknown.
The curious thing is, that this line appears
in the Lodestone's FBI. This leads to the
thinking that it may be to do with the wind,
moving mana around; although this is not
apparent in game. I remember reading in
early previews of TAK, that mana was rich in
certain areas, and perhaps the wind
originally moved it around. Still, as far
as I can tell; this command has no use; but
this cannot be tested as of yet. (B?)

workertime = 10; How quickly the unit builds and
repairs/reclaims.

wpri_badtargetcategory =
FLY;

The category of units that the unit is bad
at targeting; possibly only for VTOL units…

yardmap = S; Which parts of the unit can be moved
through, details unknown.

Some units have exceptions to these rules. One example is the
ARASMITH or Aramon Titan. This unit gives surrounding allies an armour
bonus. Other units have the ability to adjust Attack (preumably damage),
and Joy (likelyhood to fight to the death?) These are portrayed in the
FBI in separate sections within the unit details:

[AdjustArmor/Attack/Joy]
{

adjustment = 1.4; The bonus the unit provides. I presume that
the units maxdamage is multiplied by this
value, but I am not sure whether the bonus
is permanent, or only applies when in the
radius if a Titan. Therefore, rather than
modifying the unit's maxdamage, it might be
the damage coming in that is divided. Also,
I am not sure whether multiple Titans can
'add up' bonuses, allowing for some super-
tough units. I am also not sure whether
Titans can give the bonus to other Titans.

affectsenemy = 0; Whether the 'bonus' affects enemy units. (B)

edgeeffectiveness = 0.6;
The effectiveness of the bonus for units not
completely in the radius.

radius = 200; The radius of the 'bonus'.
}

HPI Format Documentation– TA:K

ZLib compression and decompression by Jean-loup Gailly (compression) and
Mark Adler (decompression). For more info, see the zlib Home Page at
http://www.cdrom.com/pub/infozip/zlib/ .

Warning: This is intended for use by people that already know what they're
doing.

I'm a C programmer, so I'm doing things in C notation here, but I'll try
to explain it so that those of you that don't speak C will be able to
understand. If you don't understand, write me at joed@cws.org and I'll
try to clear things up.

The first part of the file is a version header, followed by a file header.

The version header looks like this:

typedef struct _HPIVersion {
 long HPIMarker; /* 'HAPI' */
 long Version; /* 'BANK' if saved gamed */
} HPIVersion;

HPIMarker This is just a marker. The value
is always HAPI in ASCII. In
hex, it's 0x49504148

Version If it's a TA saved game, the value
is BANK in ASCII, or 0x4B4E4142 in
hex.

If the value is 0x00010000, then
it's a Total Annihilation archive.
See the HPI-FMT document.

If it's 0x00020000, then it's a
TA:Kingdoms archive.

Immediately following the version header is the file header. It looks
like this:

typedef struct _HPIHEADER2 {
 long DirBlock;
 long DirSize;
 long NameBlock;
 long NameSize;
 long Data;
 long Last78;

http://www.cdrom.com/pub/infozip/zlib/

} HPIHEADER2;

DirBlock This is a pointer to the file
directory.
This block may or may not be
compressed. It it starts with
'SQSH' (hex 0x48535153), it's
compressed. If it doesn't, it's
not. Decompress like any other
SQSH block, described
below.

DirSize This is the size of the directory
block pointed to above.

NameBlock This is a pointer to the actual
file names.
This block may or may not be
compressed. It it starts with
'SQSH' (hex 0x48535153), it's
compressed. If it doesn't, it's
not. Decompress like any other
SQSH block, described
below.

NameSize This is the size of the file name
block pointed to above.

Data This is the start of the actual
file data, as near as I can figure.
It always seems to be set to 0x20.

Last78 This is either 0, or it points to
the last 78 bytes of the file.
There is some data at that point,
but I haven't figured out more than
the copyright information.

HOW THE DIRECTORY WORKS

Read in the DirBlock and NameBlock. Decompress if necessary.

The NameBlock is merely a list if null-terminated file names of varying
lengths. It also starts with a null.

The directory block consists of either file or directory entries.

The first entry in the DirBlock will be the directory entry for the root
directory of the file.

A directory entry looks like this:

typedef struct _HPIDIR2 {
 long NamePtr;
 long FirstSubDir;
 long SubCount;

 long FirstFile;
 long FileCount;
} HPIDIR2;

NamePtr This points to the name of the
directory in the NameBlock.

FirstSubdir
This points to the directory entry
in the DirBlock of the
first subdirectory of this
directory. Subsequent
subdirectory entries follow.

SubCount How many subdirectories there are
in this directory.

FirstFile This points to the file entry in
the DirBlock of the
first file of this directory.
Subsequent file entries
follow.

FileCount How many file entries there are in
this directory

A file entry looks like this:

typedef struct _HPIENTRY2 {
 long NamePtr;
 long Start;
 long DecompressedSize;
 long CompressedSize; /* 0 = no compression */
 long Date; /* date in time_t format */
 long Checksum;
} HPIENTRY2;

NamePtr Points to the file name in the
NameBlock.

Start Points to the start of the file in
the hpi archive.

DecompressedSize The final decompressed size of the
file.

CompressedSize The total compressed size of the
file. If this is 0, the file is
not compressed.

Date The file date in time_t format.
This is the number of seconds since
Jan 1, 1970, GMT.

Checksum A checksum. This isn't really a
single checksum - it's actually 4
checksums in one, but it's easier
to manipulate it if you treat it
as a single long. More on checksum
calculation below

CHECKSUM CALCULATION

The checksum in each HPIENTRY2 is calculated from the uncompressed file
data.

It's actually four checksums in one, each 8-bit byte being one of the
checksums.

The first one is the sum of all the unsigned bytes in the file.

The second one is the cumulative XOR of all the unsigned bytes in the file.

The third one is the sum of all the unsigned bytes in the file, each byte
XOR'd with its offset before being added.

The fourth one is the cumulative XOR of all the unsigned bytes in the
file, each byte XOR'd with its offset before being XOR'd.

Here's some C code to calculate it:

int CheckCalc(long *cs, char *buff, long size)
{
 int count;
 unsigned int c;
 unsigned char *check = (unsigned char *) cs;

 for (count = 0; count < size; count++) {
 c = (unsigned char) buff[count];
 check[0] += c;
 check[1] ^= c;
 check[2] += (c ^ ((unsigned char) (count & 0x000000FF)));
 check[3] ^= (c + ((unsigned char) (count & 0x000000FF)));
 }
 return *cs;
}

DECOMPRESSION OF BLOCKS AND FILES

If the block was not compressed at all, then it is just inserted into the
HPI file as one big chunk.

Each chunk looks like this:

typedef struct _HPIChunk {

 long Marker; /* always 0x48535153 (SQSH) */
 char Unknown1;
 char CompMethod; /* 1=LZ77, 2=ZLib */
 char Encrypt; /* is the block encrypted? */
 long CompressedSize; /* the length of the compressed data */
 long DecompressedSize; /* the length of the decompressed data */
 long Checksum; /* Checksum */
 char data[]; /* 'CompressedSize' bytes of data */
} HPIChunk;

Marker This is the start-of-chunk marker,
and is always 0x48535153 (ASCII
'SQSH').

Unknown1 I know not what this is for. It's
always 0x02.
Maybe some sort of version number

CompMethod This is the compression method.
It's 1 for LZ77, 2 for ZLib.
I don't know if TAK does LZ77 - all
the files distributed with
the game use ZLib.

Encrypt This tells whether the block is
encrypted. See below

CompressedSize This is the size of the compressed
data in the chunk

DecompressedSize This is the size of the
decompressed data in the chunk.

Checksum This is a checksum of the data.
It's merely the sum of all the
bytes of
data (treated as unsigned numbers)
added together

data The actual compressed data in the
chunk

The 'Encrypt' field in the HPIChunk header is set to 1 to indicate
that this decryption needs to be done.

To decrypt, do this:

for x = 0 to CompressedSize-1
 data[x] = (data[x] - x) XOR x
next x

If CompMethod is 2, use ZLib compression to decompress the block. You can
get the zlib
source code from the zlib home page at
http://www.cdrom.com/pub/infozip/zlib/

TNT Format and Conversion

By: C_A_P

Index:
1. Using the Exporter

• · Heightmap
• · Minimap
• · Voidmap
• · Roadmap
• · Jpeg Key
• · The “Auto” functions

2. Using the Terrain Reader
• · Exporting the Heightmap
• · Jpeg Key Value (Hex Keys and Hex Values)

Using the Exporter:
The TAK terrain section exporter is able to create a TAK compatible
terrain
Section TNT file, along with organizing and auto-naming the JPG terrain
pictures.

Heightmap:
The heightmap is a special bitmap that is used by the TAK engine to model
the terrain mesh. You can view the terrain mesh in -game by pressing the
Enter key, and typing:

"+Contour +6" (you can replace 6 with any number from 1 - 9)
You would then type "+contour +0" to turn the mesh lines off...

The heightmap is a 256 color grayscale bitmap, and needs to be sized to
1/16 the size of your terrain image. Below is what a grayscale map may
look like for a 512x512 section (the heightmap is 32x32 pixels):

The Minimap:
The minimap is the thumbnail picture that Cartographer displays when you
are browsing through the terrain sections. You must size this image to
128x128 pixels, and it should be converted over to the correct color
palette. (each world in TAK has its own terrain color palette, which can
be found in the palettes folder in the data1.hpi file)
Below is the minimap picture to go along with the heightmap above:

The Voidmap:
TAK allows you to create a map, much like the heightmap, that tells the
game where to not allow units to travel. The voidmap works by using White
pixels to indicate that the area is voided, and Black pixels to indicate
the area is not voided. It needs to be the same size as the heightmap.

The Roadmap:
The Road map is exactly like the voidmap except that instead of indicating
where units cannot go, it indicates where there are ‘roads’ or pathways.
There are normally used on terrain sections where there are stone paths,

or roads. These areas cause the units to move faster than normal when they
walk on a ‘road’ …

The Jpeg Key

The Jpeg Key is how TAK knows which terrain graphic goes with the .tnt
file. In TAK the terrain graphics were actually embedded in the .tnt
files, but in TAK they are separate. This allows for much smaller map
sizes…
There is a checkbox next to this that says “Type in Value” this allows you
to specify a particular jpg, instead of randomly generating a number…
However, you do NOT type in the actual Hex number, it needs to be the
numeric equivalent of the hex code.

For example: The Hex value of: 7F413CFF
Has a numeric value of: 2134981887
See more on this in the “Hex Keys and Hex Values’ section”

The Auto Functions:
The ‘auto’ functions are simply those two checkboxes that are in the
exporter screen. One is labeled “Automatically copy JPG files to a
specific folder”, and the other is labeled” Default path to save TNT files
in”

The ‘JPG’ option will automatically name and place your jpg files into a
specific folder (you will need and want this functionality when you being
to build your terrain sections and need to pack them up into a file that
can be used by the game).

Your JPG files MUST correspond with the hex value embedded in the .tnt
files you create. This is done automatically for you if this box is
checked…

The “Default path for TNT’ option is simply so the program knows where you
want to save your .tnt files and will automatically select this as the
default directory to display for you when you save your TNT files. Of
course you can browse and put it somewhere else if you want.

The Terrain Reader

The terrain reader is simply a utility to extract the greyscale heightmaps
from the terrain .tnt files. Its main purpose it to allow people to
extract the heightmaps from the tnt section files so that they may blend
them all together eventually!!! Mooohoohahhahahaha ;)

Simply press the export button to save off the terrain section greyscale
bitmap….

Hex Keys and Hex Values
The hex keys are actually the names of the .jpg files. If you open up the
file called “terrain.hpi” using HPI View, then you will see all the
strangly named .jpg files. These names are encoded into the TNT files so
TAK know which terrain pieces go with each other. When you open a .tnt
section in TNT, it will show you the terrain .jpg key so you will know
which terrain graphic goes with it!!

Also, you get the ‘value’ which you can use if you need to alter an
existing TNT and keep the same JPG reference……only advanced users should
deal with this….

Package and Deployment!

To make your creations TAK compatible, you will need to get the TAK
Compatible version of HPI Pack. Use the following example as a guide for
how to build your directory structure:

Root Directory

Terrain Sections

Jpg1 World Name
Jpg2
Jpg3
Etc…

Category Name

Note: you can also open up my HPI file in HPI View and check out the
directory structure within that file as well!

Have fun!!

Conversion Tutorial
By Jerry60000

Here in this tutorial I will try to explain how to use the TAK TNT.The
other part of this tutorial is C_A_P's official one. I am just trying to
help explain the few things that seem to confuse people the most.

Things you will need to work with making Kingdoms tile sets:

• Good paint utility
• The proper TAK palettes
• To make your own tiles you will need Bryce3D or equivalent.
• Lots of patience.
• TNT program from C_A_P, and TA: K, of course.
• HPI View and HPI pack

Other things that make life easier are a DrawPad.It is way easier to make
small details and adjustments using a pen instead of a mouse.

Now here's a rundown of the files used.

Height Map : A grayscale bmp that defines the terrains characteristics. It
makes mountains act like mountains, water act like water.
Void Map : Also a grayscale bmp. Will be identical to the Height map
except that the places you don't want units to move will be marked. For
example would be a lava terrain, you would open the Height map with your
Paint Shop. Then in the places that contain lava you would select with
your brush the color white. Just plain old white (Hex=FFFFFF) anything
less wont work. This makes the lava voided to units. i.e. impassable.
Road Map :The opposite of of the Voidmap. Another greyscale bmp.Used for
when you are making roadtiles and bridge tiles.Select the color white and
just paint over the road part of the image.
JPEG Key :This is a jpg that is the full size of the tile in the game.Can
be any size you want But remember that the Kingdoms Cartographer is a
little unstable to handle big tiles.

Units Editor Tutorial – TDF Edit

INTRODUCTION

One of the qualities who made TA such a successful game, is with no doubt
the possibility players have to make their own units. That allowed the

game to be constantly evolving. This possibility also exists in
TA:Kingdoms, and this tutorial is here to explain you how to create your
own units.

The softwares you need to make your own units are the followings :
- HPI View 1.9.1
- HPI Pack 1.7
- 3Do Builder + 2.0
- A 3D soft, able to save under .LWO format file
- TDF Edit
You can download them here : www.gfruitrene.com or there
www.multimania.com/takingdoms.(sorry it's french sites).

DESCRIPTION OF A TA:K UNIT
A TA:Kingdom unit is a .UFO file. This file is a compression (with HPI
Pack) of all the files and folders a unit needs to work. One can see all
these files / folders with HPI View. You can also use this soft to extract
one or all these files.

File Organization of Aramon Flying Builder

Each file or folder has a very specific role. To help with the creation of
these files / folders, we will user TDF Edit, a utility that helps unit
creation.

http://www.multimania.com/takingdoms
http://www.gfruitrene.com/

TDF Edit Program

Important Note:
You probably noticed that all the files have the same name, with a
differerent extension : ARAFLY for the Aramon Flying Builder. This name is
the short name of te unit. The first three letters give the camp : ARA for
Aramon, TAR for Taros, VER for Veruna, and ZON for, guess what ? Zhon !
The last five letters describe the unit. The short name must be unique
among all the TA:K units, and all the files you are going to create must
have this name and be in the same folder. You can check all the short names
af all TA:K units here.

HOW TO USE THIS TUTORIAL ?

This tutorial is divided up in parts that match each folder of a typical
unit. Each part explains what is found in this folder, how to edit it with
TDF Edit, gives additional informations on this folder, and how to edit it
by hand. This last method is needed to create precise units, and enables
you to quickly change a parameter without launching TDFEdit. Personnaly I
would advise you to use TDF Edit as much as you can, as it greatly reduces
all the typos you can make while manually editing a file. For those who

file:///home/roland/taktutorialTutorailTAKengnomsNomscourtsa.htm
file:///home/roland/taktutorialTutorailTAKengnomsNomscourtsa.htm

want to make things without TDF Edit, here is the tree they must first
create :

You can also use a mixed method : create the tree and the main files with
TDF Edit and tweak things by hand afterwards. Dont forget to name all the
files with the short name you chose for your units.

HOW TO USE TDF EDIT

When you first launch TDF Edit, you must configure the programm. One this
is done, you can : - create a new unit (Create new unit) or - modify an
existing unit (Open already existing unit). If you chose to create a new
unit, you will have to choose a folder where TDF Edit will save your work.

The New Unit Creation Window. Here, the short name is ARABOWA, an Aramon
archer. The unit will be saved id C:\temp.

file:///home/roland/taktutorialTutorailTAKengprogrammesprogrammesa.htm

Then, on the left, you will find a tree that holds all the sections needed
by the unit. Their names match the names of the folders you would have to
create by hand. Let us have a closer look at what is to be done in each
section.

ANIMS

Description

In this folder there is a subfolder "Buildpics".

The pic of the unit that will appear in the construction menu is here. It
is a JPG image, of size 64x48, 16 bits.

Example : Aramon Flying Builder.

Action

1 : Create an JPG image, of size 64x48, 16 bits. We will use it to
represent your new unit in the construction menus.

2 : Launch TDF Edit, click Open and open the image that you just created.
It should appear in the window.

The selected image... Ok, its not an original one !

Info

I: Manual Edition of this folder

1: Save your image in the subfolder buildpic, created in the folder anims.

CANBUILD

Description

You will find in this folder the informations needed in the game to build
the unit, and its construction capacity if it is a builder.
This folder contains some subfolders:
- If one of these subfolder has the same name of the unit (short name),
that means that this unit is a builder, and this subfodler will contain
TDF files of all the units it can build.
- If it has the same name as an existing unit (the short name of the
existing unit), then this subfolder will hold the TDF file of the unit you
are creating.

Action

file:///home/roland/taktutorialTutorailTAKengnomsNomscourtsa.htm

1: First, you need to know if your unit is a builder or not. Check "Yeh,
my unit is a builder" accordingly.

Is your unit a builder ? Here: No!

2: You have to decide which units in TA:K wil be able to build your unit.

3: To tell TA:K the builders that can build your units, you must give the
short name of the builders in the "required" list, and give a number. This
number gives the place where the pic of your unit will appear in the build
menu of the builder. If you want to put it between the 5th and the 6th
image, then you can give 5.5.

The builder will be Aramin Keep, and the icon will be placed between the
5th and the 6th.

Here is the result: the buildpic of my unit (mage archer) between the
catapult (n. 5) and the architect (n. 6).

4: If you want your unit to be build by other builders, repeat step 3 with
"Optionnal Builder #2, #3,...".

5: If your unit is a buider, continue to step

6: If not, you can go to Features.

6: You are still here, good ! You have checked the "Yeh, my unit is a
builder" didnt you ?

7: Now you must choose which units can be built. Short names are required.

8: click on Add and select the first unit. It will appear in the first
place in the build menu. Repeat for all the units you need. Use Move up /
down to change their order.

file:///home/roland/taktutorialTutorailTAKengnomsNomscourtsa.htm
file:///home/roland/taktutorialTutorailTAKengfeaturesFeaturesa.htm
file:///home/roland/taktutorialTutorailTAKengnomsNomscourtsa.htm

The first unit we will be able to build is ARAPULT on this example. The
second is ARACAN.

Info

I: Create files manually

1 : first, you have to create a folder with the short name of the unit
that will build yours, in the canbuid fodler.

2 : Use the notepad to type this :

[Menu]
{
Priority = X;
}
X is the number where the build pic will appear in the build menu.

3 : save this file under the name shortname.tdf, in the shortname
subfolder.

4 : if your unit is a builder, create a folder with the short name of your
unit.

5: create as much .tdf files as your unit can build :

[Menu]
{
Priority = X;
}
X is the number where the build pic will appear in the build menu. 1 for
the first, 2 for the second...

6 : Save all these files under shortname.tdf in the folder you just
created.

file:///home/roland/taktutorialTutorailTAKengnomsNomscourtsa.htm

An example this file: my example unit (arabowa) is between the 5th and the
6th picture.

FEATURES

Description

This folder contains two other folders : "All worlds" and "Corpses".

1 : Corpses
In this folder you will find a .tdf file, named with the short name of
your unit, followed by "_dead" (ex: arabowa_dead.tdf). This file holds the
informations about the corpse of your unit.

2 : All Worlds
In this folder is a .tdf file, named with the short name of your unit,
followed by "_stone" (ex: arabowa_stone.tdf). This file contains the
informations about the petrified body of your unit. If your unit do not
leave any corpse when it dies, like the Monarch, you should not fill the
following.

Action

1 : Dead Unit (eq. to Corpses)

You just have to fill all the boxes. Here is their meaning.

animatable
Tells whether this corpse can be brought back to life, in the
form of a Ghost ou a Ghoul. (1 = yes, 0 = no)

damage
Amount of damage points the corpse can stand before
disappearing

description
English description : what is put on the screen when you will
point the corpse with the mouse

objects
Name of the .3DO object that will be used to render the
corpse. Usually, it is the short name followed by _dead

footprintx
Size of the corpse along the x axis, when the unit faces the
bottom of the screen

footprintz
Size of the corpse along the y axis, when the unit faces the
bottom of the screen

height Height of the unit's corpse

noshadow Does this corpse drop any shadow ? 0 = yes, 1 = no

blocking
Does this corpse block the mouvement of the other units ? 1 =
yes, 0 = no

decomposetime Amount of time it takes for the corpse to disappear

resurectable Is this unit resurectable ? 1 = yes, 2 = no

reclamaible Can this corpse be swept by other units ? 1 = yes, 0 = no

world Leave "all worlds"

hitdensity
Probability (%) that a direct shoot goes through the corpse.
100% : the corpse blocks everything, 0% nothing.

2 : Stone Unit (eq. to All worlds)

world Same as dead unit.

damage Same as dead unit. Most of the unit have 4000 here.

description Same as dead unit.

object Same as dead unit.

footprintx Same as dead unit.

footprintz Same as dead unit.

height Same as dead unit.

noshadow Same as dead unit, 0 in all the cases.

blocking Same as dead unit, 1 in all the cases.

hitdensity Same as dead unit, 100% in all the cases.

resurectable Same as dead unit.

reclaimable Same as dead unit.

isstone 1 all the time.

If your unit does not leave any corpse when it dies, or when it cant be
petrified, leave all these blank.

Info

I: How to edit this folder manually
It allows to add variables that are not accessible from TDF Edit. There
are some.

1 : In the folder "features", create two new folders : "all worlds" and
corpses"

2 : Create a file named shortname_stone.tdf in the folder "all worlds" and
a file "shortname_dead.tdf" in the folder corpses. Dont do anything if the
unit does not leave anything when it dies.

3 : Write this in the "stone" file :

[shortname_stone]
{
variable1= X;
variable2= X;
...
}
Where shortname stands for the short name of the unit. Replace _stone by
_dead for the other file. variable1, ... are variable names that you can
choose among the followings, and X are the values you want to give to
these variables. You can do that by copy / paste with existing files,
taken from existing .hpi.

Variable Description Valeur possible

animatable Leave 1 0 or 1 (animatable=1;)

blocking
Does this corpse block the mouvement
of the other units ? 1 = yes, 0 = no.

0 or 1 (blocking=1;)

damage
Amount of damage points the corpse can
stand before disappearing.

Positive integer
(damage=4000;)

decomposetime
Amount of time it takes for the corpse
to disappear.

Positive integer
(decomposetime=30;)

description
English description : what is put on
the screen when you will point the
corpse with the mouse.

English name
(description=Archer
Stone;)

footprintx
Size of the corpse along the x axis,
when the unit faces the bottom of the
screen.

Positive integer
(footprintx=2;)

footprintz
Size of the corpse along the y axis,
when the unit faces the bottom of the
screen.

Positive integer
(footprintz=2;)

height Height of the unit's corpse.
Positive integer
(height=0;)

hitdensity
Probability (%) that a direct shoot
goes through the corpse. 100% : the
corpse blocks everything, 0% nothing.

Integer between 1 and
100 (hitdensity=100;)

isstone
Is it a petrified corpse (1) or not
(0)

0 or 1 (isstone=1;)

noshadow
Does this corpse drop any shadow ? 0 =
yes, 1 = no.

0 or 1 (noshadow=0;)

object

Name of the .3DO object that will be
used to render the corpse. Usually, it
is the short name followed by _dead
for a corpse and _stone for a
petrified unit.

Name of the .3DO objetc,
without the extension
(object=arabowa_stone;)

reclaimable
Can this corpse be swept by other
units ? 1 = yes, 0 = no.

0 or 1 (reclaimable=1)

resurrectable Is this unit resurectable ? 1 = yes, 2 0 or 1

= no. (resurrectable=1;)

world
World in which all this take place.
Used in Cartographer.

Always "All worlds"
(world=All worlds;)

4 : Save these in the right folder. .

Example of such a file, here is the one of the '"arabowa".

GAMEDATA

Description

When refering to a simple unit, this folder does not contain any .tdf
file. But in the case of he Rictus, there is a moveinfo.tdf file in it.
This file defines a new way of walking. It is not recommended to edit this
kind of file, as this new moveinfo.tdf replaces the previous one. If all
the unit makers add their own things, all these informations are going to
override each other, resulting in a terrible mess. Ta:Kingdoms takes into
account only the most recent version of this file. So we will not explain
how to edit this file.
But the Gamedata folder holds a "soundclasses" sub-folder, that holds all
the informations about the sounds the unit will emit. This subfolder is
the same as the "sounds" folder, which holds the sounds your unit will
emit.

file:///home/roland/taktutorialTutorailTAKengsoundsSoundsa.htm

Action

1: you have to choose a sound (see step 2) for each action your unit can
perform. That is : attack, default, guard, move, patrol, select. If you
want to add a custom sound, please refer to section sounds.
To listen to existing sounds, open the file "english.hpi" (or the one that
matches your language) with HPIView, and double-click on the file.

2: After having choosen a sound (or 2) for each action, you have to select
this sound in the liste under the action it is linked to. If you want to
add a second one, check "hum, i'd like to add one more sound for this
action" , and select a second sound in the new list.

3: You have to choose the priority of the sounds. If there is only one
sound, the priority of that sound is 1. Simple. If you selected two
sounds, out 1 for the rare sound, and a higher number for the other one.
If you put 1 and 4, that means that the second souns will be played 4x
more than the first one.

4: You then have to select the priority for all the sounds of the unit.
When this unit is in a group, this priority will decide which unit one
will hear. Usually we find here a 1, apart for the dragons and the
monarchs.

In our example, for the action Attack, the first sound is Tonearan, and
the second one is arabuildmov3.

The frequency for both is the same.

Info

I: The bongs that one can hear in TA:K are :
Toneara for Aramon,
Tonetar for Taros,
Tonever for Veruna,
Tonezon for Zhon,
Tonenpc for the non-player characters.

II: Manually editing this file

1 : In the folder Gamedata, create a subfolder "soundclasses". Type this
in a notepad :

file:///home/roland/taktutorialTutorailTAKengsoundsSoundsa.htm

[NOMCOURT]
{
prioritized=1;
[attack]
{
son1=X;
son2=Y;
}
[default]
{
son1=X;
son2=Y;
}
[guard]
{
son1=X;
son2=Y;
}
[move]
{
son1=X;
son2=Y;
}
[patrol]
{
son1=X;
son2=Y;
}
[select]
{
son1=X;
son2=Y;
}
}

2: Replace SHORTNAME by the short name of your unit, "sound1" by the sound
you want to hear with this action, and X by the priority of that sound. If
there is a second sound, use sound2 and Y.

3: Save this file in the subfolder soundclasses with the name
SHORTNAME.tdf.

The sound file "arabowa.tdf" of our example "arabowa".

OBJECTS3D

Description

This folder contains the different 3D models of your unit. There are up to
three : one for the unit itself, one for the corpse, one for the petrified
version. These models are made with 3DO Builder +, which adds together
models from .LWO files and textures. To make a unit, you need a 3D soft.

The 3D model of arabowa

Action

I: In your 3D soft

1: First, you have to create two 3D models for your unit. The first will
be used for the unit and its petrified version, the other one for its
corpse.

2: Center your 3D models, the feet at level 0 on the vertical axis, and
the center on the 0 along the X and the Y axis.

3: Once it is done, to export it to 3D0 Builder +, read below.

As an example, I will not use the traditionnal "arabowa", because there

are too many arts and faces in it, and the figures would have been messy.
We will use a missile launcher vehicle, a secret weapon from Elsin's

arsenal. Errr, no, I guess its from TA.

Important note
The X axis is the axis that goes from left to right, the Y axis is
vertical, and the Z axis is from the front to the back.

The axes in TA:Kingdoms

II: Exportation to 3Do builder + 2.0

1: Divide up your model into fixed parts that will be animated. For
instance, separate the arm from the torso, from the leg, etc... Save each
part in a separate .LWO file. Do this for the model of the unit, not for
the dead and the stone model. They are not animated !

In the example of our missile launcher, we have
three different parts : the chassis (1), the guns
(2) and the turret (3). In TA:K it is quite
frequent to see 20 parts models of units...

2: Then, you have to reopen each of these file, and center each part in
it. This has to be done because the center of the axises is the center of
the rotation of the part.

Here, wa have centered the turret.

3 : All the .LWO files are now going to be imported in 3DO Builder +.

Note about *.DXF files

To make your unit, you can use *.DXF files too. But you must first "soap"
this files before. To do this, lunch Visual Soap and configure it like
this screenshoot.

"File in" is your *.DXF file and "File out" is the modified *.DXF file.
Click on "Soap it !" to modify your file and adapt it to 3Do builder.

III: Importation in 3Do Builder + 2.0

1: Launch 3DO Builder +. On the top left is found the tree of the pieces
of your unit. For the moment, there is only one : the basis, which is
normal. This tree represents how the pieces are linked together. When a
piece at a given node of the tree moves, then all the pieces under this
node move also. At the bottom of the window, you will find all you need to
adapt your model to TA:K. On the right, are the textures you can map on
your model. As 3DO Builder can manage TA and TA:K units, dont forget to
select "TA:K-all" in the first pull down menu. At the center of the
window, are the four views of your unit : top front and right, and a 3D
rendered view. You can change this view between Wire frame, bare frame,
shaded frame and textured frame.

2: Let us begin by rebuild our unit. To create a new piece, click on
"Objetcs -> create object", and type in the name of your unit. It will
appear in the tree on the left. Then, select this piece in the tree, and
click "Objects -> import object" to import a .LWO file. Your part should
now appear in all the views. You can "click and drag" in the 3D view.
Adjust the position of that part, using the icon with the little arrows on
it. You can then add all the other parts on that one. On the side views,
the selected part is in red, the other one in blue, the blue square
represent the rotation axis.

The first piece, the chassis has ben imported, on can see it int the
pieces tree, it is called "baseb". Dont worry if it is too big or too
small, we will take care of that later. Use the zoom to adjust it.

3: Repeat the previous step until all the unit is made. Be careful : never
import a .LWO file on the first piece "base", as it is the piece who will
give the green circle (square in TA) when the unit will be selected. On
the wire frame view, the unit should now appear.

The unit is build. Here it is the piece of the missile tube that has been
selected. One can see the center of rotation (blue square).

4: Now you need to adjust the scale of the unit. Select "base" in the
pieces tree, then "Special -> Change Ground Plate Size...", and fill in
the size you want to give to your unit. . The first figure corresponds to
the X axis, and the second one to the Z axis. For instance, the Mage
archer is 2x2, and the Gold Dragon is 4x4. Multiply this size by 12 (32x32
for the Mage Archer and 64x64 for the Golden Dragon). Click apply, the
size of your unit shold have changed.

This rocket launcher is of size 2x3, thus I put 32x48. One can see that
the unit is a bit small...

5: You then have to adapt the size of the window. Click on the first piece
after the piece "base", then click Advanced. On the left, click "apply
transformation to child object". Then, using the scale factor function,
try to adapt the size of your unit to the one of the window. Then click on
All to apply that on all the views.

Ou example, zoomed in. The scale factor is 4,5.

6: Lets continue with the texture mapping. We just have one thing left :
be sure that all the faces have the same orientation. If a face has the
wrong orientation, we will not see any texture on it. Choose the 3D view,
and apply a dummy texture on all the faces. Repeat the operation for each
piece, apart from "base". Now, in the 3D view, the object should appear
with the same texture ofr its pieces. If one face has no texture, that
means it is oriented in the wrong way.

On this example, some textures (turret) are on the wrong side.

7: To put the faces on the correct sense, select them one by one, and hit
F2. That's all.

One face to be
turned...

A F2 later, it is
done...

Some more F2 later, our
model is correct

8: You can now apply the texture you want. For this, select a face,
double-click on the texture you want to apply. You can also apply a simple
color, with the "Color" option.

The textured missile launcher. Ok, those are TA textures, but it is the
same for TA:K.

9: Here it is ! Your 3D model should be finished. Now you can save it
under the short name or your unit, and do the same for the stoned version
and the corpse. The stone texture is called "basiliskstone". The corpse
should be save in shortname_dead.3do, and the stone version in
shortname_stone.3do.

The 3D models or our great arabowa

The body :
arabowa.3do

The corpse :
arabowa_dead.3do

The petrified body :
arabowa_stone.3do

IV: Import your three files .3do with TDF Edit

1: Click on the three "Open" button to select the three 3D models you just
made.

2: You can edit your model by clicking on "Edit". It will automatically
launch 3DO Builder +.

3: You can use an existing corpse or stone body by clicking on "I use an
already existing..." and give a short name to the 3D object. Remind that
you have to configure the Features for that.

THE NAME OF THE .3DO FILE IN THE BOX SHOULD ALWAYS MATCH THE ONE UNDER
EDIT.

Info

I: Description of 3do Builder

3DO Builder + has many other features that the one described here. All the
features are here.

II: TA:Kingdoms textures creation for 3DO Builder +

1: Open the Data.hpi file, with HPI View

2: Create a temporary folder called "textures"

3: Save all the files of the textures folder of the data.hpi in the folder
you just created.

4: Launch HPI Pack, select your temporary folder in "Directory to pack",
and give a name "Textures.ufo" to the new file you are creating. Save this
file in your TA:K directory. Select TA and TA:CC compression method.

file:///home/roland/taktutorialTutorailTAKengobjects3d3dobuilder.htm
file:///home/roland/taktutorialTutorailTAKengfeaturesFeaturesa.htm

5: Click pack, verifiy that the file has been created.

6: Launch 3DO Builder + and select TA:K all. If all went right, you should
see a list of textures at the top right of the window. If not, or if the
colors of the textures are not correct, that means that it did not work
properly.

These steps are well-detailled in the file Compatibility.txt, from the
.zip of 3DO Builder +.

SCRIPT

Description

The .COB files are found in this folder. It contains the animation scripts
of the unit. This script is in fact a .BOS file, that has to be compiled
into a .COB file. The TA:K Cobbler is not published yet.

Action

I: Creation of the script file (.BOS) and compilation into .COB

This step in not realizable for the moment, it will be described later.

II: Importation of the script in TDF Edit

1: Create your script .BOS and compile it a in .COB file, called
shortname.cob.

2: In TDF Edit, click on the first Open button, to give your .COB file,
and on the second one to give the .BOS file. The .BOS file is not needed,
but if you put it here, you are sure you will not loose it !

The files "arabowa.cob" and "arabowa.bos" in TDF Edit.

Info

I: Manually editing this file

1: Create the .BOS and .COB files, as explained is the previous section.

2: Place these two files in the Scrips folder of your unit.

SOUNDS

Description

This folder holds the .WAV files of the new sounds you can add. You are
advised to use file names in majuscules, without any spaces in them. These
names will be used in the TDF file of the soundclasses folder. The

sampling rate of the files are : 11 025 Hz, 8 bits, Mono, Microsoft RIFF
Wave.

Action

1: You need to have a .wav file ready to be put into TA:K. Save it using a
8 letters name, non special caracters, no space.

2: Click Open, and select all the files you want to add.

3: Write down the names of the sounds, and go to the Gamedata section to
add them.

4: To add new sounds, do as explained in the Gamedata section, but dont
select anything in the list. Copy the filename in the right box, respect
min / maj, and do NOT put the .wav extension.

Info

I: How to edit this folder manually

1: In the folder "sounds" of your unit, put the sounds that you want to
add.

2: You can use these file name in the section "gamedata -> soundclasses"

TRANSLATE

Description

Cavedog has noticed that on the earth, not everybody was talking english.
So they decided to add multingual support to their games. So, TA:K exists
in five languages : English, French, German, Italian and Spanish. How does
it work ? In fact, when the game is launched, it is in english. Once
everything is in memory, the engine loads all the files of the Translate
folder, and read the translation of the texts and names. The language you
have installed is recorded in the Windows Registry.

Action

1: Put in the first box the english name of your unit, that will be
recorded in the .FBI file of the Units folder.

2: Put in then the names in the other languages in the right boxes.

3: Do the same for the corpse and the stone body, apart from the first
one, chosen in the features section.

file:///home/roland/taktutorialTutorailTAKengfeaturesFeaturesa.htm
file:///home/roland/taktutorialTutorailTAKengunitsUnitsa.htm
file:///home/roland/taktutorialTutorailTAKenggamedataGamedataa.htm
file:///home/roland/taktutorialTutorailTAKenggamedataGamedataa.htm
file:///home/roland/taktutorialTutorailTAKenggamedataGamedataa.htm

Info

I: How to manually edit this file

You can translate things that you cannot reach which TDF edit.

1: With a notepad, write all this :
[ENGLISH_NAME]
{
german=TRADUCTION;
french=TRADUCTION;
italian=TRADUCTION;
spanish=TRADUCTION;
}

2: Replace ENGLISH_NAME by the word you want to translate, and TRADUCTION
by its translation into the given language.

Example of a file from the translate folder

II: How to change the default language

Beware of the following ! Windows is an unstable OS, tweaking the registry
without knowing what you are doing can lead to major crashes, definitive
loss of data and programs, hours of reboot, reformats and numerous

reinstallations of all your PC and hard drive. And terrible headaches.
And, worst of all, big laughs from your linuxians friends. Furtive Fox,
GFRUIT Rene and l'Arm à l'œil have warned you, and cannot be taken
responsible for any damage to your computer or your health. If you want to
have a complete, say, Italian game, you also need the file Italian.hpi in
your TA:K installation directory.

1: Open the registry *** BEWARE OF WHAT YOU DO NOW *** No undo is
available in this process. Startup -> execute, then type in regedit and
return. You are in the registry editor.

2: In the left tree, chose HKEY_CURRENT_USER -> Software -> Cavedog
Entertaiment -> Kingdoms -> InterfaceOptions, double click on language.

3: Change the value ENGLISH into FRENCH, or GERMAN, or ITALIAN, or
SPANISH. Click Ok. That's all.

Here it is, TA:K in french !

UNITS

Description

This folder contains a .fbi file that holds all the informations on the
units parameters : name, resistance, speed, type, weapons, ...

Action

1: Click on Create in TDF Edit to create a new FBI file.

2: Click edit to edit this file.

3: Edit the .fbi file. Follows explainations on each variable. Click File
-> Save and exit when it's done.

4: Edit the weapons part, explain below.

Info

I: The variables of the .fbi files

If you dont know which values to give to the variables, take a look at the
existing .fbi to have an idea.

Valeur de FBI Explication Variable

Description

Name- Long name of your unit name = Mage Archer;

Description (side)-
Side or description of your
unit

description = Aramon;

Side- Side of your unit side = ARA;

Unit Category-

Category of your unit: ARA =
Aramon, VER = Veruna, TAR =
Taros, ZON = Zhon, MON =
Monster, NPC = Non-playable
unit, ATTACK = can attack?,
Magic = is unit with mana?,
FLY = Flying unit, FACTORY =
can your unit build?, Monarch
= Monarch

category = ARA ATTACK;

Unitname- Short name of your unit unitname = ARABOWA;

Unit's 3do-

*3do file of your unit,
without the extension *.3do
(generally it's the short
name of your unit)

objectname = ARABOWA;

Unit Version- Version of your unit version = 1.2;

Unit ID
Number of your unit between 1
and 9999, this number must be
unique

unitnumber = 1995;

Unit Capabilities #1

Does the unit activate
when build

Does the unit activate when
build (the gate,...)?

activatewhenbuilt = 1;

Does the unit attracts
gods

Does the unit attracts gods? attractsgods = 1;

Is the unit a builder Is the unit a builder? builder = 1;

Can the unit NOT aid
with the construction
of other
buildings/units

Can the unit NOT aid with the
construction of other
buildings/units?

builderlimited = 1;

Can the unit capture
other units

Can the unit capture other
units?

cancapture = 1;

Can the unit attack Can the unit attack? canattack = 1;

Can the unit stop Can the unit stop? canstop = 1;

Can the unit cloak Can the unit cloak? cancloak = 1;

Can the unit fly Can the unit fly? canfly = 1;

Can the unit guard Can the unit guard? canguard = 1;

Can the unit hover Can the unit hover? canhover = 1;

Can the unit transport
other unit

Can the unit transport other
unit?

cantransport = 1;

Can the unit load other
unit

Can the unit load other unit?
(for a transport unit)

canload = 1;

Can the unit move Can the unit move? canmove = 1;

Can the unit patrol Can the unit patrol? canpatrol = 1;

Can the unit clean
(reclaim)

Can the unit clean (reclaim) canreclaim = 1;

Can the unit raise dead
units into ghols

Can the unit raise dead units
into ghols?

cananimate = 1;

Can the unit bring
units back to life

Can the unit bring units back
to life?

canresurrect = 1;

Can the unit NOT be
captured

Can the unit NOT be captured?cantbecaptured = 1;

Can the unit NOT be
turned to stone

Can the unit NOT be turned to
stone?

cantbestoned = 1;

Unit Capabilities #2

Is this unit a gate Is this unit a gate? gate = 1;

Is this unit a ghost Is this unit a ghost? ghost = 1;

Does this unit hover
while attcking

Does this unit hover while
attcking?

hoverattack = 1;

Does this unit become a
features when build
(walls)

Does this unit become a
features when build (walls)?

isfeature = 1;

Does this unit NOT have
a shadow

Does this unit NOT have a
shadow?

noshadow = 1;

Does this unit NEVER
become a veteran

Does this unit NEVER become a
veteran?

noveteran = 1;

Can this unit be turend
off or on

Can this unit be turend off
or on?

onoffable = 1;

Should ennemy units
target this unit

Should ennemy units target
this unit?

shootme = 1;

Does this unit NOT tilt
over uneven terrain

Does this unit NOT tilt over
uneven terrain? (1 for
walking units)

upright = 1;

Does this unit
automatically switch
weapon when out of mana

Does this unit automatically
switch weapon when out of
mana? (for unit which use
mana for weapon)

weaponswitching = 1;

Can the unit float on
water

Can the unit float on water? floater = 1;

Can the unit NOT be
transported

Can the unit NOT be
transported?

cantbetransported = 1;

Health/Armor/Mana #1

Body Type-

Type of body: armor = armor;
flesh = without armor; stone
= stone; scales = with
scales; wood = in wood.

bodytype = flesh;

Dammage Category- !!!! damagecategory = human;

Maximum Mana- Max mana for the weapons. maxmana = 120;

Mana recharge Rate- Mana recharge Rate. manarechargerate = 1.4;

Maximum Hit Points- Résistance of the unit. maxdamage = 1421;

Heal Rate- Heal Rate healtime = 2;

Experience Points-
Experience points giving to
the unit which kill your
unit.

experiencepoints = 20;

Health/Armor/Mana #2

Cloak Cost Standing-
Cloak Cost when your unit is
standing.

cloakcost = 50;

Cloak Cost Moving-
Cloak Cost when your unit is
moving.

cloakcostmoving = 500;

Minimum Cloak Distance-
Minimum Cloak Distance. (in
pixel)

mincloakdistance = 50;

Mana Generated- Mana créated by the unit mogriumincome = 8.2;

Mana Stored- Mana Stored. mogriumstorage = 5000;

Blood Color 1- First color of blood. bloodcolor1 = 160 30 0;

Blood Color 2- Second color of blood. bloodcolor2 = 160 30 0;

Blood Color 3- Third color of blood. bloodcolor3 = 160 30 0;

Stone-
Name of the *3do file of your
stone corpse.

stone = arasword_stone;

Corpses-
Name of the *3do file of your
dead corpse.

corpse = arasword_dead;

Misc Unit Variable #1 1

Acceleration- Accélération of the'unit acceleration = 10;

Maximum speed- Max Speed maxvelocity = 1.1;

Brake rate-
Brake rate (- than 1 = short
turn, + than 10 = large turn)

brakerate = 0.15;

Maneuvering Distance-

Max distance for maneuvring
(to avoid a stone for
example, or to attack an
other unit)

maneuverleashlength =
500;

Turn In Place Rate- Turn Rate When standing turninplacerate = 2500;

Turn Rate- Turn Rate When moving turnrate = 3000;

Cruise Altitude-
Cruise Altitude of a flying
unit

cruisealt = 150;

Build Cost- Build Cost buildcost = 43944;

Build Time- Build Time buildtime = 8755;

Mission When Built-
standby for all the unit,
exept VTOL_standby for flying
unit.

defaultmissiontype =
Standby;

Misc Unit Variable #2

Radar Distance-

Radar distance of the unit
(in pixel): zone where your
unit can see other unit in
the minimap

radardistance = 500;

View Radius- Line of sight (in pixel) sightdistance = 135;

Sonar Radius- Used in TA sonardistance = 500;

Road Multiplier-
Rate which increase speed
when the unit is on a road

roadmultiplier = 1.21;

Water Multiplier-

Rate which increase speed
when the unit is in the woter
(you can use number between 0
and 1 to reduce the speed)

watermultiplier = 0.75;

Order When Built-

Not for building.
Aggressivity of the unit: 0 =
passive;1 = défensive; 2 =
offensive.

standingunitorder = 0;

Building Order When
Built-

For building. Aggressivity of
building units: 0 = passive;1

unitstandorders = 2;

= défensive; 2 = offensive.

Building Slope Slack-
Max slope where a building
can be build.

maxslope = 15;

Footprint X- Size of your unit (width) footprintx = 2;

Footprint Z- Size of you unit (length) footprintz = 2;

Misc Unit Variable #3

Transport Unit
Capacity-

Capacity to load other unit.
(number of unit)

transportcapacity = 15;

Transport Distance-
Max range to unload unit (in
pixel)

transportdistance =
300;

Transport Max Unit
Size-

Max size (width) of a unit
loaded by your unit

transportsize = 9;

Transport Capacity-
Capacity to load other unit.
(in size of unit)

transportsizecapacity =
40;

Work Speed- Work speed workertime = 10;

Water Line- Water line for a ship waterline = 8;

Attack Run Lengh- !!!!

Hover Attack Altitude- !!!!
hoverattackaltitude =
10;

Hover Attack Distance- !!!!
hoverattackdistance =
15;

Movement Class-
Type of mouvement of the
unit, look in other *.FBI for
example.

movementclass =
GROUND2;

Misc Unit Variable #4

Total Unit Allowed-
Quantity of this unit allowed
(for example, 1 for sacred
dragon)

totalallowed = 1;

Yard Map-

Inside of a building and how
can other unit walk on it
(for example, unit can walk
on the front of a factory,
where they are build or unit
can walk trough a door when
it is open)
o: unit can't walk on it,
never.
c: unit can walk on it if the
unit is actived (like the
door: unit can walk on it (in
fact trough it) when the doo
is open)
. (point): unit can always
walk on it.
The first caracter is the
left bottom place and the
lastest is the right top
place of the batiment

yardmap
=
.. ooooooo ooooooo
ooooooo ooooooo ooooooo
ooooooo ooooooo ccccccc
ccccccc ccccccc
ccccccc;

Copyright- allway Copyright 1999
Humongous Entertainment. All
rights reserved

copyright = Copyright
1999 Humongous
Entertainment. All

rights reserved.;

Unknow Variable #1

Soundcategory
Name of the *.TDF file where
the sound informations are
stored.

soundcategory = arafly;

SoundClass-
Name of the *.TDF file where
the sound informations are
stored.

soundclass = arafly;

Bmcode- 1 for units, 0 for buildings bmcode = 1;

Maxwaterdepht- Only fo TA

Notargetcategory-
The (type of) target that
your unitr can NOT attack

Tedclass- Type of unit (side) tedclass = Aramon;

Wpri_badtargetcategory-

The (type of) target that
your unitr has difficult to
attack (Wpri_ pour for the
first weapon, Wsec_ for the
second et Wter_for the third)

wsec_badtargetcategory
= VTOL;

Unknow Variable #2

Admultiplier- !!!! admultiplier = 2;

Animatetype- !!!! animatetype = 0;

Bankscale- !!!! bankscale = 1;

Corpseadjustx- !!!! corpseadjustx = 2;

Economybonus- !!!! economybonus = 5;

Fireatwillrandom !!!! fireatwillrandom = 1;

Moverate1- !!!! Used by flying units moverate1 = 1;

Moverate2- !!!! Used by flying units moverate2 = 9;

Pitchscale- !!!!

Unknow Variable #3

Transmaxunits- Like transportcapacity transmaxunits = 18;

Standingmoveorder- Only for TA standingmoveorder = 2;

Wind- !!!! wind = 100;

Canbuild Like builder canbuild = 1;

Commander Only for TA commander = 1;

Bonus

Used for "magic" effects of your unit (healing, increasing power, increasing
armor,...) (for example, the sacred fire Zhon)

Adjust Armor
Influence resistance of the
unit (protect your unit)

[AdjustArmor]
{
Variableci-dessous
}

Adjust Joy (life)
Influence life of the unit
(heal your unit)

[AdjustJoy]
{
Variableci-dessous
}

Adjust Attack Influence attack power of
your unit

[AdjustAttack]
{

Variableci-dessous
}

Intensity of adjustment
Intensity of adjustment: 1 =
none, 2 = doubled, 0.5 =
reduce by 2

adjustment=45;

Edge effectiveness
How decrease the effect of
the unit with distance (1 =
none)

edgeeffectiveness=1;

Radius
Influence zone (radius in
pixel)

radius=90;

affects enemy Does the unit affect enemi? affectsenemy=1;

Weapons

Describe below, in part
IV

Describe below, in part IV

II: Manually editing the .FBI

1: Open the .fbi file with notepad, and type in the following :
[UNITINFO]
{
VARIABLE1=XXX;
VARIABLE2=XXX;
...
}

2: Replace "VARIABLE1=XXX; VARIABLE2=XXX; ..." by the needed values, you
can find them all in the above tables. Just take the neede variables, and
leave te others. To ease your task, you can take an existing .FBI file and
tweak it as needed.

3: Save the file under the name shortname.fbi in the units folder of your
unit. Click here to show the arabowa.fbi file

4: Now you have to edit the weapons of this file, as explained in the next
section.

III: The weapons

You can edit the weapons from TDF Edit, but I think it is easier to do it
with notepad, as the window openned by TDF Edit is a bit small, and you
cant see the text in it. I did not take time to list all the possible
variables (it will be done in the next version of this tutorial), so you
would better take an existing FBI file and edit it.

1: Open the FBI file, and note [WEAPON1]for the first weapon, [WEAPON2]
for the second one, and [WEAPON3] for the thrid one.

[WEAPON1]
{
VARIABLEWEAPON1=YYY;
VARIABLEWEAPON1=YYY;

file:///home/roland/taktutorialTutorailTAKengunitsarabowa1.txt
file:///home/roland/taktutorialTutorailTAKengunitsarabowa1.txt

...
[DAMAGE]
{
DOMMAGEDEL'ARME=ZZZ;
}
}

2: Replace "VARIABLEWEAPON1=YYY; VARIABLEWEAPON1=YYY; ..." by the
variables you need for that weapon. Copy it from an existing weapon, you
will avoid typos and the like.

Variable de l'arme Description

aimtolerance = 1024; !!!!!

areaofeffect = 31; Area of effect (in pixels)

builduptime = 0.5; !!!!!

buttonimagedisabled =
ArrowParalyzePU;

Picture of the desactied weapon (no enough
mana,...) if the unit have more than one weapon

To know the aviable pictures, open "data.hpi"
with HPI View, the picures are in the folder
"anims -> weaponpic" in *.JPG format

buttonimagedown =
ArrowParalyzePU;

Picture of the weapon if the unit have more than

one weapon: when the button is pushed

buttonimageselected =
ArrowParalyzeSBh;

Picture of the selected weapon if the unit have

more than one weapon

buttonimageup =
ArrowParalyzeSB;

Picture of the weapon (by default) if the unit

have more than one weapon

damagetype = paralyzer; Type of damage inflicted by the weapon (look in
*.FBI)

decaytime = 3; !!!!!

dontleadtargets = 1; !!!!! the weapon do not follow the target (to
avoid turnig arrow)

duration = 9; Time of effect of the weapon

edgeeffectiveness = 0.7; !!!!!

emittime = 45; Time of shoot of the weapon

explosionclass =
green_shockring;

!!!!!

firestarter = 1; Can the weapon trigger of a fire(1 yes, 0 no)

gravityadjustment = 4.25; Influance of gravity on the weapon (for catapult)

hweffect = fire; !!!!!

innercolor = 255 255 255; Inner color of flash weapon

middlecolor = 200 230 255; Middle color of flash weapon

outercolor = 180 200 255; Outer color of flash weapon

lightmap = small; How the ground is lighting by a shoot of this
weapon

lobpreferred = 1; !!!!!

manapershot = 500; Mana used by one shoot

maxvariation = 5; !!!!!

minrange = 500; Min range for a shoot

nimbus = 1; !!!!!

noairweapon = 1; This weapon can NOT fire on air units (1)

model = Araarrow; 3D Model of the projectile (3do file)

name = Bow and Arrows; Name of the weapon

particlespersecond = 5; !!!!!

radiusart0 = ring_fx_redA; !!!!! Used by earthquake weapon

radiusart1 = ring_fx_redB; !!!!! Used by earthquake weapon

radiusart2 = ring_fx_redC; !!!!! Used by earthquake weapon

range = 450; Max range of a shoot

reloadtime = 3; Reload time

ringcount = 3; !!!!! Used by earthquake weapon

ringdelay = 0.45; !!!!! Used by earthquake weapon

ringduration = 1.2; !!!!! Used by earthquake weapon

shadowart = weaponshad01; Show below in "shadowgaf"

shadowgaf = shadows; *.GAF file which contains the animation of the
shadow of the weapon. The name of this animation
is in "weaponart

shakeduration = 2; Used by earthquake weapon, duration of the
earthquake

shakemagnitude = 3; Pwer of the earthquake

showeffect = 0; !!!!!

soundhitclass = arrow; Sound

soundhit = arrow08; Sound when the weapon hit the target

spinheading = 150; !!!!! Center of rotation (show in "spinpitch")

spinpitch = -3000; Speed of spinnig of the projectile of the weapon
(for spinnig projectile, like the weapon of the
aramon builder). Can be negative for a rotation
in the other direction

spritecount = 35; !!!!!

subtype = Earthquake; Subtype of the weapon

turnrate = 180; !!!!!

type = Ballistic; Type of the weapon

unitsonly = 1; Weapon affects just unit and not building

variationtime = 2; !!!!!

veteranlevel = 10; !!!!!

veteranmodel = araham10; 3D Model of the unit when the unit is a veteran

wanderendart =
flamevortexend;

!!!!!

wanderloopart = !!!!!

flamevortexloop;

wanderstartart =
flamevortexstart;

!!!!!

waterexplosionclass =
small water explosion;

type of explosion when the weapon hit the water

weaponart = cannbmed; Show below in "weapongaf"

weapongaf = projectiles; *.GAF file which contains the animation when the
weapon hit the ground. The name of this animation
is in "weaponart

weaponvelocity = 750; Velocity of the projectile

3: You must now fix the amount of damage this weapon inflicts. Replace
"DOMMAGEDEL'ARME=ZZZ;" by "default = ZZZ;"to give the base power of the
weapon. Then by using "nomcourt=ZZZ", you can adjust this damage as a
function of the attacked unit.

4: Save your new .FBI file, that's all ! To show ARABOWA.fbi, click here
(arabowa.fbi)

MISC

Description

Here you can add a file like a readme but this file will not be readed by
normal TA:K players because this file will be compressed with the unit.

Action

1: Click on "Open" to add a file and on "Remove" to remove it.

COMPILATION OF THE UNIT

Now, you must compil your unit into a *.ufo file. Do not forget to change
the TA:Kingdoms shorcut and add "-disablecavedogverification".

Compilation with TDF Edit

file:///home/roland/taktutorialTutorailTAKengunitsarabowa2.txt
file:///home/roland/taktutorialTutorailTAKengunitsarabowa2.txt

Just click on "Compress" in TDF Edit. Your unit will be compressed in the
folder where you saved it. Now put this file "shortname.ufo" in your TA:
Kingdoms folder.

Do not forget to check error by clicking on "Options -> Check Errors".

Compilation with HPI Pack

1: Open HPI Pack

2: Select the folder where you can find the "anims", "canbuild",...
folders in "Directory to pack" box and give a name (the short name of your
unit for example) with the extension *.ufo. in "Destination HPI File" box

Selectionnez le dossier ou se trouve tous vos dossier "anims",
"canbuild",... dans "Directory to Pack" et le fichier *.ufo (n'oubliez pas
de noter l'extention .ufo) où vous voulez compresser l'unité. Il n'est pas
obligatoir de donner le nom court de votre unité au fichier *.ufo.

3: Select "TA:K" dans "Program" and click on "Pack"

INSTALLATION AND CONFIGURATION OF THE PROGRAMS

I: HPI View by JoeD

This excellent piece of software can uncompress .HPI, .UFO, .CCX and .KMP
files. These files contain all the infos TA:K needs to run. You need 1.9
version to be compatible with TA:Kingdoms.

http://www.cws.org/~joed/ta/index.html

Installation:
Uncompress de .zip file in a fodler, and create the shortcuts you need.

II: HPI Pack by JoeD

This program can build .HPI, .UFO, .CCX and .KMP files. It is the little
brother of HPI View, that does the opposite. You need 1.7 version for
TA:K.

http://www.cws.org/~joed/ta/index.html

Installation:
As simple as HPI View. You need to uncompress the .zip in a folder. To
make units compatible with TA:K, you just have to add "-
disablecavedogverification" after kingdoms.exe on the command line of your
shortcut.

The modified shorcut

III: TDF Edit by TA:Kingdoms Fr

This software will help you in all the creation process of your unit.

http://www.multimania.com/takingdoms

Installation
Uncompress the .zip in a folder, respecting the hierarchy of the fodlers /
files. You need then to create two folders : one for the sounds, and one
for the images.

Help:
To have this tutorial when you click on "Help -> Tutorial" ou CTRL F1,copy
all this tutorial (don't change the files and folders names) in the
subfolder "Tutorial" of the folder where you have installed TDF Edit.

Sounds :
- create a folder on the desktop named "taksounds"
- extract all the files from english.hpi (english version) or french.hpi
(french version) or spanish.hpi, german.hpi, italian.hpi (guess which one
is for the italian version ?) in the taksounds folder you just created.
You can use HPI View to do this.
- In this folder, delete all the subdirectories, except the "sounds" one.
- Launch HPI Pack, selct your "taksounds" folder in "Directory to pack",
and save that in your TDF Edit folder, under the name "sounds.hpi"
(Destination HPI file). Select TA in "Programs", and click "pack".

Images :
- create a folder on the desktop, called "takpics"
- extract all the files from "data.hpi" (on your TA:K CD if you chose

minimal installation), with HPI View
- delete all the directories from the "talpics" folder, apart from "anims"
- in this subfolder, delete all the subfolders, apart from "buildpic"
- launch HPI Pack, and pack the takpics folder in a file called
"buildpic.hpi" in your TDF Edit folder.

IV: 3Do Builder + by Quantum

This programm is used to create units from .DXF or .LWO files. You need
version 2.0 to work with TA:K. You also need a 3D modeler software that
can save in .DXF ou .LWO formats.

Installation:
Extract all the files from the .zip, and launch 3dobuilder+.exe to
configure the program
- you should have created TA:Kingdoms textures, as explained in the

http://www.annihilated.com/quantum

objects3d section of this tutorial
- If you have the TA UnitViewer, you can use it here, but it will not work
wth TA:K units. Click on File->Export yo Unit Viewer to choose the right
Unit Viewer, compatible with TA:K units.
- Click on "View -> Set custom TA Location" and select the folder where TA
resides (if you have it), and click on "View -> Set custom TA:K Location"
to select the folder where TA:K is.
- if ou click on "View -> Display options", you can choose the colors of
the layout, and also diable the 3D View. You should be aware that this
view is repsonsible for 80% of this soft crashes.

To enable the 3D view, you need to have OpenGL installed on your PC. It is
available from Quantum's site.

V: Visual Soap

You need it if you want to use *.dxf file in 3Do Builder +

VI: Gaf Builder Pro par C_A_P

Use it to create custom textures for your unit and custom features for
your maps.

http://www.annihilated.com/quantum
file:///home/roland/taktutorialTutorailTAKengobjects3dObjects3da.htm

Installation:
Uncompress de .zip file in a fodler, and create the shortcuts you need.

3DO BUILDER +

Some functions are descibed in the objects3d section of this tutorial.

I: L'INTERFACE

1: Icon menu

1: Create a new 3D model
2: Open an existing 3D model
3: Save a 3D model

file:///home/roland/taktutorialTutorailTAKengobjects3dObjects3da.htm

4: Create an image of a 3D model from the Unit Viewer. Use it for TA units
only, as this Unit Viewer is not compatible with TA:K Units.
5: Create a new piece of the object.
6: Import a
piece.

Supported formats of the import module :
- *.DXF: files created by most of the 3D modeler
- *.LWO: "lightwave" files, genererated by 3D modeler
- *.OBJ: "object" files, genererated by 3D modeler
- *.3de: file created by 3DO Builder. It is a textured piece.
- *.3do: file created by 3DO Builder. It is a textured piece,
taken out of its context.
- *.3dt: another 3DO builder file. Holds a piece, with all its
subpieces.

7: Export a
piece.

Supported formats are : *.DXF, *.3de, *.3dt.

8: Zoom in (the four views are affected)
9: Zoom out (the four views are affected)
10: Zoom 100%
11: Default cursor
12: Cursor that enables you to move a piece in the four views.
13: Draw a red border around the selected face in the 3D textured view.

Note about *.DXF files

To make your unit, you can use *.DXF files too. But you must first "soap"
this files before. To do this, lunch Visual Soap and configure it like
this screenshoot.

"File in" is your *.DXF file and "File out" is the modified *.DXF file.
Click on "Soap it !" to modify your file and adapt it to 3Do builder.

2: Table "Face"

1 : Face selector. A face is selected on the selected part in the pieces
tree just above. The face is in red on the three plane views, and also on
the textured view if the option is selected (3).
2 : Possible modifications for this face : - Mapping of a texture by
double click on the right menu (texture chooser) (4). The selected texture
is shown under "Orientation", and its name is shown near "Texture" (2) -
Change the orientation of the texture with "Orientation". You can turn in
of 90°, 180°, 270°. - By clicking on "Clear", one can delete the texture
from the face. - By clicking on Apply, one can map the texture on more
thant one face, or on the complete piece. ("Apply to the entire object") -
By clicking on Color, you can apply a simple color on a face.

3: Table "Object"

1: Enables you yo move the selected part more precisely than using the
cursor (2). Click on Apply to validate your modifications.
3: Enables you to move the rotation axis on the origin of the axises. You
can use that if you misplaced while creating your .LWO file. The rotation
axis is shown with a little blue square on the three plane views.
4: Is used to zoom your part. A more powerful function will be explained
in the Table "Advanced". It acts as a multiplier on the size of the part.
Thus a figure smaller than one reduces it, and bigger than one enlarges
it. Click Apply to record the modification.

4: Table Advanced

A: Object
1: Check this box if you want to apply the transformations you made on
this piece to all its subpieces. Useful if you want to move an arm
composed of three subpieces.
2: Is used to change the size of the piece. It is more powerful than the
object zoom in / out, as you can apply it axis by axis, by selecting "X",
"Y", "Z" or "All". You can also apply this modification to all the
subpieces of that piece. The button marked with an inversed ? (3) undoes
the modifications.
4: Is used to rotate a piece as well as all its subpieces. To select which
rotation you want to apply, you have to click on the "Front", "Top" or
"Right" view.

B: Vertex

On this table you can move vertices of the faces, to go from to
for instance. When you click on this table, a small red square appears on
the views, marking the vertex that is to be moved. Set the new position of
the vertex in the box (1) and "apply" it. You can change of vertex by
using the arrows (2) next "Vertex".

C: Other
This table is empty, I dont know what it is doing here...

5: Menus

This menu enables you to choose which type of texture you want to use. If
TA is not in the list, either you dont have TA (you should !), or you dont
have configured 3DO Builder properly. Check it here. If TA:K is not in the
list, either you dont have TA:K (...) or 3DO Builder is not configured
properly, or that your texture pack is not correct. To build it, go here :
"Objects3d". To make TA:K units, I advise you to choose TA:K -- All.

This menu is a chooser between different types of textures.

II: THE MENUS

file:///home/roland/taktutorialTutorailTAKengobjects3dObjects3da.htm
file:///home/roland/taktutorialTutorailTAKengprogrammesprogrammesa.htm
file:///home/roland/taktutorialTutorailTAKengprogrammesprogrammesa.htm

1: File

As you can see it, all the classical operations are available from this
menu.
"Export to Unit Viewer..." makes possible to preview a unit in Cavedog
Unit Viewer. Not compatible with TA:K...
"Export to Unit viewer (custom)..." allows you to test your TA unit
scripts. Not TA:K compatible.
"Import Textures..." to import your own textures. Does not work with TA:K.

2: View

"Grid" : to enable the grid in the three plan views
"Grid Size..." : to change the grid size
"View" : to choose the X, Y or Z view
"OpenGL view" : to choose what kind of 3D view you want to see, textured
or not
"Startup Option..." : to tell the program where are your TA / TA:K folders.
"Display Option..." : to customize your interface
"Keep textures ratio in Face box" : uncheck this to make the program
faster.

3: Objects

Is used to create a new piece in the pieces tree ("Create Object") or to
delete one ("Remove Object"). You can import a piece ("Import object..."),
export one or all of them ("Export Object..." and "Export All
Objects..."). All these functions are available from the icon menu.
"Import Scale Value..." : to fix a zoom value when you import a piece.

4: Special

"Inverse Face" : to inverse the sense of a face, if the texture appears on
the wrong side.
"Inverse Object Faces" : inverses all the faces of a part.
"Inverse All Faces" : inverses all the faces of a 3D object.
"Merge Duplicate Vertices..." and "Clean Up Model" : are used to delete
vertices to reduce the number if the faces. Be careful when using this,
you are likely to get a strange result !
"Add Unit Ground Plate" : adds the green square arounf the foot of a unit
(TA), or the green glowing circle (TA:K). The value is given in pixels,
you need a 16x16 square for a 1x1 unit.
"Set face as Unit Ground Plate" : to use the selected face as the unit
ground plate
"Change Ground Plate Size..." : to change its size...
"Scale all Objects..." : change the size of the whole object
"Create Unit Picture..." : use this in TA only. The picture is used in the
build menus to represent the unit.

5: Misc.

"Select next Face", "Select Previous Face" : to select the next / previous
face of the part.
"Copy Piece" : more simple than to export / import a part. Textures are
also copied.
"Copy Branch" : same as above. Alle the subpieces are also copied.
"Paste Piece/Branch" : to paste what you have copied.

SHORT NAME LIST

Each unit has a long name (Flying Builder) and a short name, composed of 8
letters, understood by the TA:K engine. One of the first things you want
to do is to choose a short name for your unit. The first three letters are
related to its camp : ARA, TAR, VER or ZON.
TDF Edit has a function that tells you the short name of any unit, giving
its long name, and its long name giving its short name.

Looking for a name with TDF Edit

1 : Click "Options -> Search Unit name..."

2 : Type in a long or a short name then "Small to long", or a long name
then "Long to small". Choose your language.

3 : Click search, the result is written in the text window.

As an example, I looked for l'"Adorateur de Lihr" in the french version,
and I learnt that it was VERLIHR.

Creating Build Pictures

From Acolytes Shrine(http://www.takmcc.com/acolytes/)

• Open your units.3do.
• Find the angle you want. Make

sure it's no bigger than
64*48. I know, it’s small but
you have to live with it :)

• Press ALT + PRINTSCREEN (on
your keyboard)

• Open MS Paint
• Paste the screenshot. (CTRL-V)

(you can directly pasted into
Photoshop but it's more
comfortable for me :)

http://www.takmcc.com/acolytes/
http://www.takmcc.com/acolytes/tutorials/tutori12.jpg

• Using the outline tool, select
the area around your unit
image, and copy it (CTRL-C)

• Open Photoshop
• Create a new file; goto File +

New.
• Make sure it's 64*48 pixels

and in RBG color.

• Paste your from Step 2 (it
should in new layer).

• Select the "Magic Wand" tool

• Using your "wand", select all
the "blue" (or the background
color and press Delete.
Increasing your magnification
will help

• From the Layer box, right-
click on layer your units pic
is on and select Blending
Options.

• A new window should a appear
• Click (and select) Outer Glow
• Select the settings and

experiment to get the effect
you want.

You should have should like the bp
to your left.

Now, to added a background. First
find one (Or select one here).. Do
so now, I can wait

http://www.takmcc.com/acolytes/tutorials/tutori5.jpg

• Got your pic? Good.
• Right Click on your picture

and select Copy
• Goto to back to Photoshop.
• Paste the picture (CTRL + V)

(make sure it's a layer behind
your units picture)

• And now you got a background.
And your finished at this
point

• Now saving. The easiest part.
• File and Save As...
• Make sure you save in JPG.

And since TA:K will take any
(file) size, and color, make
sure you set quality to
Maximum (12) to get the best
quality :)

Customizing TA:K to Allow Third Party Races without Iron Plague

By Delozier

All Race Custom Installation

The predominant problem I have been receiving feedback about
lately is installation of third party races when the Iron
Plague is not available. If you really love playing Kingdoms,
I recommend that you purchase the Iron Plague..... even if you
have to shop the www to find it. I know for a fact that the
expansion can be purchased online through vendors such as
Amazon.com, and Chips and Bits.......

So what I did was re-install Kingdoms without the Iron Plague
and started trying to get the races to work there myself. I
ended up creating some kinda large files to download (25mb
total) and I am hopeful that this custom installation will
alleviate enough race installation problems to be worth the
file sizes. I have NOT included the Creon race, or any of the

http://www.chipsbits.com/
http://www.Amazon.com/
http://www.takmcc.com/acolytes/tutorials/tutori11.jpg

Iron Plague map files. I have left the sidedata files separate
for those of you who wish to modify it to include only certain
races. The NoIP version included with the NoIPfiles does NOT
support the Creon race. The files contain:

1. Races contains the versions of the 3rd party races
currently installed in my original Kingdoms
folder. These have been edited for sidedata and ai
conflicts. An unfinished AI (not all races are included)
that can be updated if all else proves to work as
planned. Also, a copy of the Creon supporting
allsidedata is included.

2. NoIPfiles contains the Ip files needed to load the 3rd
party races. It also contains the No IP sidedata file.
It does NOT contain the Creon race.

3. Supporting files contains the extra files needed to
perform the installation below. (version upgrade files,
and Cavedog unit files)

Download those files to your hard drive and unzip them. DO NOT
unzip them into your Kingdoms directory! Instead, unzip them
into another directory that you have created. This is what I
have done in order to get to the third party races to work
without the Iron Plague installed:

1. Performed a FULL INSTALLATION of Kingdoms from the CD.
2. Added the -disablecavedogverification to my shortcut.
3. Installed 1x-2bd.EXE, then 2x-2bd.EXE. These are the

Cavedog version 1 to 2 upgrades contained in the
supporting files download. I did NOT install version 3!

4. Installed the Cavedog units included in the supporting
files download.

5. Added the races and ai folder included in the races
download.

6. Added the new version of the AllRaceNoIP file included
in the No IP files download.

7. Added the NoIPsidedata file included in the No IP files
download.

http://www.takmcc.com/cgi-bin/load.cgi?utilities/SupportingFiles.zip
http://www.takmcc.com/cgi-bin/load.cgi?utilities/AllRaceNoIP.zip
http://www.takmcc.com/cgi-bin/load.cgi?utilities/Races.zip

	Technical Reference Document
	Revision History
	Project Status Report
	Team Members

	Total Annihilation
	Directory Structure and File Formats
	Directory Structure
	Totala1.hpi Contents
	Totala2.hpi Contents

	HPI File Format Documentation
	FBI Commands
	Editable Categories
	ARM Abbreviations
	CORE Abbreviations

	BOS Functions
	BOS Script Tutorial – TA
	static-var
	#define
	#include
	Create()
	StartMoving()
	StopMoving()
	AimPrimary(heading,pitch)
	AimSecondary(heading,pitch)
	AimTetriary(heading,pitch)
	AimFromPrimary(piecenum)
	AimFromSecondary(piecenum)
	AimFromTetriary(piecenum)
	QueryPrimary(piecenum)
	QuerySecondary(piecenum)
	QueryTetriary(piecenum)
	FirePrimary(piecenum)
	FireSecondary(piecenum)
	FireTetriary(piecenum)
	Activate()
	Deactivate()
	StartBuilding()
	StopBuilding()
	TargetHeading(heading)
	QueryNanoPiece(piecenum)
	QueryBuildInfo(piecenum)
	QueryTransport(piecenum)
	BeginTransport(height)
	EndTransport()
	SweetSpot(piecenum)
	Demo()
	Killed(severity, corpsetype)

	GUI File Format
	Generic Infos about gui files :
	COMMON Tag descriptions :
	id :
	Name :
	width/height
	xpos/ypos : Read, not so obvious detail inside.
	active :
	fontnumber :
	attribs :
	assoc :
	UNCOMMON Tag descriptions :
	Headers (ID 0) :
	Buttons (ID 1) :
	Listbox (ID 2) :
	Textbox (ID 3) :
	Scrollbar (ID 4) :
	Labels (ID 5) :
	Blank Surfaces (ID 6) :
	Fonts (ID 7) :
	Picture Box (ID 12) :

	GAF Format
	0004EA90 78 D5 03 00 02 00 00 00
	00000490 A2 27 15 00 09 00 45 11 08 44 45 A3 09 00 44 05

	SCT Format
	OTA Format
	BugFix Information
	Unit ID Number Changes:
	3rd party units don't work with Bugfix?
	Speed Benifit:
	AI fixes:
	Ai profile changes:
	Single-player Mission changes:
	New control options!
	Category changes in unit FBI files:
	COB script file changes:
	Core Necro changes:
	Antinuke silo changes:
	Arm Stunner EMP silo changes:
	Krogoth changes:
	Landmines Changes:
	LRPC Changes:
	Bugfix for the Arm Pelican:
	Bugfix for ALL Hovercraft:
	Bugfix for Naval Defensive Structures:
	Bugfix for the Naval Dragons Teeth:
	Bugfix for the Arm Penetrator:
	EMG weapon changes:
	Core Pyro changes:
	Crawling Bomb changes:
	Arm Fibber changes:
	Core Leviathan Super-Sub changes:
	Cruiser and Destroyer Changes:
	Missile Frigate Changes:
	Advanced bomber changes:
	Anti-Aircraft missiles changed:
	Flakker changes:
	Zero-tolerance bug:
	Weapons Changes:
	Accumulating scars bug:
	Corpse Changes:
	Build Menu Changes:
	Unit Name Changes:
	Unit Changes:
	Mobility changes on units:
	GAMEDATA dir (in REV31.GP3) file changes:
	Unfinished work:

	Map Tutorials
	Terragen Map Tutorial
	WHAT YOU WILL NEED
	PART ONE - SETTING UP TERRAGEN
	PART TWO - DESIGNING YOUR MAP
	PART THREE - MAKING IT A MAP

	Creating Custom Tilesets
	Create a concept
	Design Your Texture and create a template.
	Create the Terrain Features
	Create A Pool of water
	Create the acid
	Create a River of Acid
	Converting the sections to the TA color palette
	Importing the bitmaps
	Editing Height
	Finishing Touches
	Now its time to create a Terrain Archive and make your map!
	Make your Map

	AI TWEAKING GUIDE
	What is the ai?
	Cavedog's ai, and its problems:
	General problems with all the ai's made by Cavedog:
	But that can be changed!
	What are ai's and Where do I put them?
	How does the computer know which ai profile to use?
	How do I change the ai?
	Then what does make a good ai?
	So, a good ai should build nothing but resources?
	Obviously wasted resources are bad?
	It's not supposed to do too much at one time, but is ALSO supposed to do everything?
	So optimally, the ai should have 0 metal and 0 energy in storage?
	How much resources should the ai be using to stay balanced?
	It starts building lots of solars even though it has max energy!
	
Why is the ai slow building a fusion reactor?
	
How come the ai built 5 Advanced Aircraft Plants - I LIMITED it to just 3!
	The difficult MATH side of ai profiles:
	
The ai's clockwork build patterns:
	How come my ARM ai *SMOKES* my CORE ai?
	Ok, I caught all of that. But my ai still seems slow to buildup!
	testing, Testing, TESTING!
	I'm doing a lot of testing, but what am I looking for to know what to change?
	What kind of ai profile *DOES* a map need?
	About MY ai...

	TA Weapons Creation
	Types of weapons
	Important values and behaviour of the weapon.
	Weapon Characteristics
	Special weapon stuff
	Looks of a weapon
	The sounds it makes
	Weapon Controls
	Needed resources

	Total Annihilation: Kingdoms
	Directory Structure and File Formats
	Directory Structure
	
	
	V2 Rocket.hpi Contents
	V3Rocket.hpi Contents

	FBI Functions
	FBI TABLE

	HPI Format Documentation– TA:K
	CHECKSUM CALCULATION
	DECOMPRESSION OF BLOCKS AND FILES

	TNT Format and Conversion
	
	
	Using the Exporter:
	Heightmap:
	The Minimap:
	The Voidmap:
	The Roadmap:
	The Jpeg Key
	The Auto Functions:
	The Terrain Reader
	Hex Keys and Hex Values
	Package and Deployment!

	Conversion Tutorial
	Units Editor Tutorial – TDF Edit
	INTRODUCTION
	HOW TO USE THIS TUTORIAL ?
	HOW TO USE TDF EDIT
	ANIMS
	CANBUILD
	FEATURES
	Info

	GAMEDATA
	OBJECTS3D
	SCRIPT
	SOUNDS
	TRANSLATE
	UNITS
	MISC
	COMPILATION OF THE UNIT
	INSTALLATION AND CONFIGURATION OF THE PROGRAMS
	3DO BUILDER +
	SHORT NAME LIST

	Creating Build Pictures
	Customizing TA:K to Allow Third Party Races without Iron Plague

