Total Annihilation and
Total Annihilation: Kingdoms
Reference Document

Technical Reference Document

By Arthur Keller
This version amended by Andrew L. Crystall
Portions Created by other individuals and used with permission

Version 2.5
Questions regarding this information can be directed to dawnfalcon@zoom.co.uk.
All work included herein is retained as the copyright of the original authors. Certain portions and technical data are Copyright © Cavedog Entertainment, GT Interactive, Humongous Entertainment and Infogrames, Inc., all rights reserved by copyright holders.

7Revision History

8Project Status Report

9Team Members

10Total Annihilation

10Directory Structure and File Formats

10Directory Structure

11Totala1.hpi Contents

43Totala2.hpi Contents

45HPI File Format Documentation

54FBI Commands

60BOS Functions

62BOS Script Tutorial – TA

63static-var

64#define

65#include

65Create()

66StartMoving()

67StopMoving()

68AimPrimary(heading,pitch)

68AimSecondary(heading,pitch)

68AimTetriary(heading,pitch)

70AimFromPrimary(piecenum)

70AimFromSecondary(piecenum)

70AimFromTetriary(piecenum)

70QueryPrimary(piecenum)

70QuerySecondary(piecenum)

70QueryTetriary(piecenum)

71FirePrimary(piecenum)

71FireSecondary(piecenum)

71FireTetriary(piecenum)

72Activate()

72Deactivate()

77StartBuilding()

77StopBuilding()

78TargetHeading(heading)

78QueryNanoPiece(piecenum)

79QueryBuildInfo(piecenum)

79QueryTransport(piecenum)

80BeginTransport(height)

80EndTransport()

80SweetSpot(piecenum)

80Demo()

81Killed(severity, corpsetype)

82GUI File Format

82Generic Infos about gui files :

84COMMON Tag descriptions :

84id :

85Name :

86width/height

86xpos/ypos : Read, not so obvious detail inside.

86active :

87fontnumber :

87attribs :

87assoc :

87UNCOMMON Tag descriptions :

88Headers (ID 0) :

89Buttons (ID 1) :

90Listbox (ID 2) :

91Textbox (ID 3) :

91Scrollbar (ID 4) :

93Labels (ID 5) :

93Blank Surfaces (ID 6) :

94Fonts (ID 7) :

95Picture Box (ID 12) :

95GAF Format

101SCT Format

102OTA Format

104BugFix Information

104Unit ID Number Changes:

1063rd party units don't work with Bugfix?

107Speed Benifit:

107AI fixes:

109Ai profile changes:

109Single-player Mission changes:

110New control options!

111Category changes in unit FBI files:

112COB script file changes:

113Core Necro changes:

114Antinuke silo changes:

115Arm Stunner EMP silo changes:

115Krogoth changes:

116Landmines Changes:

117LRPC Changes:

117Bugfix for the Arm Pelican:

118Bugfix for ALL Hovercraft:

118Bugfix for Naval Defensive Structures:

118Bugfix for the Naval Dragons Teeth:

119Bugfix for the Arm Penetrator:

119EMG weapon changes:

119Core Pyro changes:

120Crawling Bomb changes:

120Arm Fibber changes:

120Core Leviathan Super-Sub changes:

120Cruiser and Destroyer Changes:

120Missile Frigate Changes:

121Advanced bomber changes:

121Anti-Aircraft missiles changed:

121Flakker changes:

122Zero-tolerance bug:

122Weapons Changes:

123Accumulating scars bug:

124Corpse Changes:

124Build Menu Changes:

125Unit Name Changes:

125Unit Changes:

126Mobility changes on units:

127GAMEDATA dir (in REV31.GP3) file changes:

127Unfinished work:

129Map Tutorials

129Terragen Map Tutorial

129WHAT YOU WILL NEED

129PART ONE - SETTING UP TERRAGEN

130PART TWO - DESIGNING YOUR MAP

136PART THREE - MAKING IT A MAP

139Creating Custom Tilesets

140Create a concept

140Design Your Texture and create a template.

141Create the Terrain Features

143Create A Pool of water

144Create the acid

145Create a River of Acid

147Converting the sections to the TA color palette

147Importing the bitmaps

149Editing Height

151Finishing Touches

152Now its time to create a Terrain Archive and make your map!

153Make your Map

156AI TWEAKING GUIDE

156What is the ai?

156Cavedog's ai, and its problems:

157General problems with all the ai's made by Cavedog:

159But that can be changed!

159What are ai's and Where do I put them?

159How does the computer know which ai profile to use?

160How do I change the ai?

162Then what does make a good ai?

162So, a good ai should build nothing but resources?

162Obviously wasted resources are bad?

162It's not supposed to do too much at one time, but is ALSO supposed to do everything?

163So optimally, the ai should have 0 metal and 0 energy in storage?

163How much resources should the ai be using to stay balanced?

164It starts building lots of solars even though it has max energy!

164Why is the ai slow building a fusion reactor?

164How come the ai built 5 Advanced Aircraft Plants - I LIMITED it to just 3!

165The difficult MATH side of ai profiles:

166The ai's clockwork build patterns:

167How come my ARM ai *SMOKES* my CORE ai?

167Ok, I caught all of that. But my ai still seems slow to buildup!

167testing, Testing, TESTING!

168I'm doing a lot of testing, but what am I looking for to know what to change?

170What kind of ai profile *DOES* a map need?

171About MY ai...

172TA Weapons Creation

172Types of weapons

173Important values and behaviour of the weapon.

173Weapon Characteristics

174Special weapon stuff

174Looks of a weapon

174The sounds it makes

174Weapon Controls

175Needed resources

176Total Annihilation: Kingdoms

176Directory Structure and File Formats

176Directory Structure

182V2 Rocket.hpi Contents

183V3Rocket.hpi Contents

203FBI Functions

203FBI TABLE

211HPI Format Documentation– TA:K

213CHECKSUM CALCULATION

214DECOMPRESSION OF BLOCKS AND FILES

215TNT Format and Conversion

215Using the Exporter:

216Heightmap:

216The Minimap:

217The Voidmap:

217The Roadmap:

217The Jpeg Key

217The Auto Functions:

218The Terrain Reader

218Hex Keys and Hex Values

219Package and Deployment!

219Conversion Tutorial

220Units Editor Tutorial – TDF Edit

220INTRODUCTION

221HOW TO USE THIS TUTORIAL ?

222HOW TO USE TDF EDIT

223ANIMS

224CANBUILD

227FEATURES

228Info

230GAMEDATA

233OBJECTS3D

246SCRIPT

248SOUNDS

248TRANSLATE

252UNITS

261MISC

261COMPILATION OF THE UNIT

262INSTALLATION AND CONFIGURATION OF THE PROGRAMS

2683DO BUILDER +

276SHORT NAME LIST

277Creating Build Pictures

279Customizing TA:K to Allow Third Party Races without Iron Plague

Revision History

	Version
	Date
	Changes

	2.2
	9/10/01
	Major Document revision, first public release

	2.3
	9/28/01
	Added map tutorial sections, tileset creation tutorial, corrected some FBI entries, added AI tweaking section, corrected some formatting.

	2.4
	9/30/01
	Added Weapons Creation, massive layout modifications, fixed BOS tutorial, added TA:K third party race installation instructions, reformatted TA FBI List and deleted the weapons section (redundant with newer weapons section),

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Conversion Project Information

Project Status Report

[image: image1.png]

Report Date: 10 Sep 2001

	Task Description
	Date

Added
	Start

Date
	Estimated Completion

Date
	Percent

Complete

	Recruitment of Staff
	
	10/1/00
	Ongoing
	

	Research Activites
	
	
	
	

	Investigation of 2nd Resource

	
	12/1/00
	5/15/01

	100%

	Compilation of TA FBI Commands
	
	12/1/00

	12/15/00
	100%

	Compilation of TA:K FBI Commands
	
	12/1/00

	
	60%

	Compilation of TA BOS Commands
	
	12/1/00

	12/15/00
	100%

	Compilation of TA:K BOS Commands
	
	12/1/00

	
	35%

	Decoding/Implementation of .gui files
	
	3/1/01
	
	55%

	File/system layouts - TA
	
	5/1/01

	5/2/01
	100%

	File/system layouts - TA:K
	
	5/1/01
	5/2/01

	100%

	Compilation of Documents
	
	1/1/01

	Ongoing
	

	Research of usability of demo
	
	6/15/01
	
	0%

	Application Development
	
	
	
	

	GUI converter
	
	1/1/01
	
	65%

	TA - TA:K hpi converter
	
	1/1/01
	
	10%

	Map converter
	
	1/1/01

	
	0%

	Conversion
	
	
	
	

	Tile Conversion
	
	6/1/01

	
	20%

	Unit Conversion
	
	9/15/01
	
	0%

	Map Conversion
	
	7/15/01
	
	0%

	GUI conversion
	
	6/15/01

	
	40%

	Creation
	
	
	
	

	Create TA:K AI for TA Units
	
	7/15/01
	
	0%

	Creation of other packages
	
	8/1/01

	
	0%

	Create Install Package

	
	8/7/01
	
	0%

	Testing
	
	
	
	

	Alpha testing
	
	9/30/01
	
	0%

	Beta Testing (closed)
	
	11/1/01

	
	0%

	Beta Testing (open)
	
	12/1/01
	
	0%

	Final Release
	
	1/1/02
	
	0%

Team Members

[image: image2.png]

(This list is incomplete… If your name is missing, let me know)

	Name
	Responsibilities
	Email

	Arthur “Aslan” Keller
	Project Lead, Research
	aslan@tauniverse.com

	Andrew “Dawn Falcon” Cyrstall
	Map Conversion Lead
	dawnfalcon@annihilated.com

	Jerry20000
	Map Conversion, Tilesets
	Jerry60000@hotmail.com

	HANSOLO
	Unit Conversion Lead
	

	GenghisKhanX
	Unit Conversion
	

	Dark Rain
	GUI, Units, just about everything else
	rochdenis@hotmail.com

	
	
	

Total Annihilation

[image: image3.png]

Directory Structure and File Formats

[image: image4.png]

Directory Structure

[image: image5.png]

\CAVEDOG

└───TOTALA

 ├───BACKUP

 └───CC

Directory PATH listing

Volume serial number is 0012FC94 00A3:DCB5

D:.

└───TOTALA

 │ ccdata.ccx

 │ ccmaps.ccx

 │ mptaext.dll

 │ online.dll

 │ readme.doc

 │ setup.exe

 │ setup.ini

 │ smackw32.dll

 │ Taccread.doc

 │ Taccread.txt

 │ tadwngox.dll

 │ taheatx.dll

 │ takalix.dll

 │ tamplayx.dll

 │ tatenx.dll

 │ tawirepx.dll

 │ TotalA.exe

 │ totala1.hpi

 │ totala2.hpi

 │

 ├───BACKUP

 │ online.dll

 │ tadwngox.dll

 │ taheatx.dll

 │ takalix.dll

 │ tamplayx.dll

 │ tatenx.dll

 │ tawirepx.dll

 │ TotalA.exe

 │

 └───CC

 Ccquery.exe

 INSTALL.LOG

 UNCC.EXE

Totala1.hpi Contents

TOTALA1.HPI

├───ai

│ AirBattle.txt

│ DEFAULT.TXT

│ MISSIONS.TXT

│ SeaBattle.TXT

│

├───anims

│ ALLIES.GAF

│ ANYMSN.GAF

│ Archibrief.GAF

│ ArchiFoli.GAF

│ ArchiFronds.GAF

│ ArchiMetal.GAF

│ ArchiPalms.GAF

│ Archipelago.GAF

│ ArchiTrees.GAF

│ Archivents.GAF

│ ARMAAC1.GAF

│ ARMAAC2.GAF

│ ARMAAP1.GAF

│ ARMAAP2.GAF

│ ARMACA1.GAF

│ ARMACA2.GAF

│ ARMACK1.GAF

│ ARMACK2.GAF

│ ARMACS1.GAF

│ ARMACS2.GAF

│ ARMACV1.GAF

│ ARMACV2.GAF

│ ARMALAB.GAF

│ ARMALAB1.GAF

│ ARMALAB2.GAF

│ ARMAMD1.GAF

│ ARMAP1.GAF

│ ARMASY1.GAF

│ ARMASY2.GAF

│ ARMAVP1.GAF

│ ARMAVP2.GAF

│ ARMAVP3.GAF

│ ARMBLDG.GAF

│ ARMCA1.GAF

│ ARMCA2.GAF

│ ARMCA3.GAF

│ ARMCAMO.GAF

│ ARMCK1.GAF

│ ARMCK2.GAF

│ ARMCK3.GAF

│ ARMCK4.GAF

│ ARMCOM1.GAF

│ ARMCOM2.GAF

│ ARMCS1.GAF

│ ARMCV1.GAF

│ ARMCV2.GAF

│ ARMCV3.GAF

│ ARMCV4.GAF

│ ARMINT.GAF

│ ARMLAB1.GAF

│ ARMOPT.GAF

│ ARMSHARE.GAF

│ ARMSHIPS.GAF

│ ARMSILO1.GAF

│ ARMSY1.GAF

│ ARMVEHIC.GAF

│ ARMVP1.GAF

│ BRIEF.GAF

│ COMMBOOM.GAF

│ commongui.GAF

│ commongui_french.GAF

│ commongui_german.GAF

│ CORAAC1.GAF

│ CORAAC2.GAF

│ CORAAP1.GAF

│ CORAAP2.GAF

│ CORACA1.GAF

│ CORACA2.GAF

│ CORACK1.GAF

│ CORACK2.GAF

│ CORACV1.GAF

│ CORACV2.GAF

│ CORALAB1.GAF

│ CORALAB2.GAF

│ CORAP1.GAF

│ CORASY1.GAF

│ CORASY2.GAF

│ CORAVP1.GAF

│ CORAVP2.GAF

│ CORAVP3.GAF

│ CORBLDG.GAF

│ CORCA1.GAF

│ CORCA2.GAF

│ CORCA3.GAF

│ CORCAMO.GAF

│ CORCK1.GAF

│ CORCK2.GAF

│ CORCK3.GAF

│ CORCK4.GAF

│ CORCOM1.GAF

│ CORCOM2.GAF

│ CORCS1.GAF

│ CORCV1.GAF

│ CORCV2.GAF

│ CORCV3.GAF

│ CORCV4.GAF

│ COREBLDG.GAF

│ CORFMD1.GAF

│ CORINT.GAF

│ CORLAB1.GAF

│ CORMAIN.GAF

│ CORSHIPS.GAF

│ CORSILO1.GAF

│ CORSY1.GAF

│ CORVEHIC.GAF

│ CORVP1.GAF

│ CURSORS.GAF

│ Desertbrief.GAF

│ DRYCRUSH.GAF

│ DRYMETAL.GAF

│ DRYROCKS.GAF

│ DRYSCARS.GAF

│ DRYVENTS.GAF

│ ENDMSN.GAF

│ FOG.GAF

│ FOGTILES.GAF

│ FRONTEND.GAF

│ FX.GAF

│ GEOTHERM.GAF

│ Greenbrief.GAF

│ greenvents.GAF

│ grnventest.GAF

│ hattfont11.GAF

│ hattfont12.GAF

│ HOLES.GAF

│ HUMANS.GAF

│ IceChunks.GAF

│ ICEMETAL.GAF

│ ICESCARS.GAF

│ ICEVENTS.GAF

│ IGTITLES.GAF

│ Lavabrief.GAF

│ LavaRockA.GAF

│ LavaRockB.GAF

│ LavaRockC.GAF

│ LavaScars.GAF

│ LavaSpires.GAF

│ LavaStuff.GAF

│ LavaStuff2.GAF

│ LOADGAME.GAF

│ LOGOS.GAF

│ LOUNGE.GAF

│ LOUNGE2.GAF

│ Lunar2Brief.GAF

│ Lunarbrief.GAF

│ MAINMENU.GAF

│ Marsbrief.GAF

│ MarsGlyphs.GAF

│ MarsPlants.GAF

│ MarsPlants2.GAF

│ MarsPlants3.GAF

│ MarsRockGone.GAF

│ MarsRockGoneShad.GAF

│ MarsRockHit.GAF

│ MarsRockHitShad.GAF

│ MarsRocks.GAF

│ MarsRocks2.GAF

│ MarsRocks3.GAF

│ MarsVents.GAF

│ Metalbrief.GAF

│ MISCART.GAF

│ mooncraters.GAF

│ mooncrush.GAF

│ moonmetal.GAF

│ moonrocks.GAF

│ moonscars.GAF

│ MUSIC.GAF

│ MUSICRT.GAF

│ NEWGAME.GAF

│ OLDMAIN.GAF

│ PIPES.GAF

│ PREFS.GAF

│ ROCKREC.GAF

│ rockrecscars.GAF

│ ROCKS.GAF

│ rocksdead.GAF

│ rockshurt.GAF

│ rockshurt2.GAF

│ RUINS1.GAF

│ SCARS.GAF

│ SELGAME.GAF

│ SELPROV.GAF

│ SELSIDE.GAF

│ SHARE.GAF

│ SINGLE.GAF

│ SKIRMISH.GAF

│ TALK.GAF

│ TALK2.GAF

│ TERRAIN.GAF

│ TITLES.GAF

│ TOWERS.GAF

│ towerscars.GAF

│ TREES.GAF

│ VENT.GAF

│ VENTS.GAF

│ VISMASK.GAF

│ VISMASKS.GAF

│ WDesertbrief.GAF

│ WETCRUSH.GAF

│ WETMETAL.GAF

│ WETROCKS.GAF

│ WETSCARS.GAF

│ WETVENTS.GAF

│ WRECKAGE.GAF

│

├───bitmaps

│ ARMBKG.PCX

│ armguibottile.pcx

│ armguisidetile.pcx

│ armguitoptile.pcx

│ battleroom2.pcx

│ battlestart.pcx

│ BUTTONS2.PCX

│ CDLOG256.PCX

│ CONSOLE.PCX

│ COREBKG.PCX

│ corecamp0.PCX

│ corecamp1.pcx

│ corguibottile.pcx

│ corguisidetile.pcx

│ corguitoptile.pcx

│ createnew.pcx

│ DHELP.PCX

│ DLoadgame2.pcx

│ DLoadList.pcx

│ DRESTART.PCX

│ DSavegame2.pcx

│ DSaveList.pcx

│ DSelectmap2.pcx

│ DVIEWMAP.PCX

│ ENDCAMP.PCX

│ FAILURE.PCX

│ FRONTBG.PCX

│ Frontbgold.pcx

│ Frontend1F.PCX

│ FrontendX.pcx

│ GROMMETS.PCX

│ Hattfont10.PCX

│ Hattfont11.PCX

│ IGButtons.pcx

│ IGMBRIEF.PCX

│ IGOPT0X.PCX

│ IGOPT1X.PCX

│ Igoptintx.pcx

│ igoptionsTEMP.PCX

│ Igoptmusx.pcx

│ Igoptsoux.pcx

│ IgoptTEMP.pcx

│ Igoptvisx.pcx

│ IGPATCH.PCX

│ Installgame.pcx

│ InstallgameJ.pcx

│ Installglam.pcx

│ LOADBAR.PCX

│ Loadgame2bg.pcx

│ LOGOTEST.BMP

│ mbriefarm.pcx

│ mbriefcor.pcx

│ Mission02Win.PCX

│ Mission02Win2.PCX

│ Mission02WinBW.pcx

│ newcampaign4.pcx

│ newcampaign4x.pcx

│ newcamplogos.pcx

│ OptInterface4x.pcx

│ Options4x.pcx

│ Optmusic4x.pcx

│ OptSound4x.pcx

│ OptVisual4x.pcx

│ OUTCOME0.PCX

│ OUTCOME1.PCX

│ playanygame4.pcx

│ Playgame2.pcx

│ Playgame2J.pcx

│ pressedbone.PCX

│ PREVIEW.PIX

│ SAVEGAME.PCX

│ selconnect2.pcx

│ selectgame2x.pcx

│ SINGLEBG.PCX

│ Skirmsetup4x.pcx

│ SMALLDOG.BMP

│ small_cavedog_logo.pcx

│ stagebuttons.pcx

│ STAR.PCX

│ TEMP.PCX

│ temptrans.pcx

│ TITLSCRN.PCX

│ UnitRestrict.pcx

│ UnitRestrict4x.pcx

│ UnitRestrict5x.pcx

│

├───features

│ ├───all worlds

│ │ DragonsTeeth.tdf

│ │ scars.tdf

│ │

│ ├───archi

│ │ FOLIAGE.TDF

│ │ METAL.TDF

│ │ TREES.TDF

│ │ TREES2.TDF

│ │ VENTS.TDF

│ │

│ ├───corpses

│ │ arm_corpses.tdf

│ │ arm_heaps.tdf

│ │ core_corpses.tdf

│ │ core_heaps.tdf

│ │

│ ├───desert

│ │ METAL.TDF

│ │ ROCKS.TDF

│ │ RUIN.TDF

│ │ VENTS.TDF

│ │

│ ├───green

│ │ METAL.TDF

│ │ ROCKS.TDF

│ │ SHRUBS.TDF

│ │ SMUDGES.TDF

│ │ steamvents.tdf

│ │ TREES.TDF

│ │

│ ├───ice

│ │ CHUNKS.TDF

│ │ METAL.TDF

│ │ SCARS.TDF

│ │ VENTS.TDF

│ │

│ ├───lava

│ │ METAL.TDF

│ │ NODES.TDF

│ │ ROCKS.TDF

│ │ SPIRES.TDF

│ │ VENTS.TDF

│ │

│ ├───mars

│ │ GLYPHS.TDF

│ │ METAL.TDF

│ │ PLANTS.TDF

│ │ ROCKS.TDF

│ │ VENTS.TDF

│ │

│ ├───metal

│ │ buildings.tdf

│ │ PIPES.TDF

│ │ steamvents.tdf

│ │

│ ├───moon

│ │ CRATERS.TDF

│ │ METAL.TDF

│ │ ROCKS.TDF

│ │

│ └───wetdesert

│ metal.tdf

│ rocks.tdf

│ vents.tdf

│

├───fonts

│ ARMBUTT.FNT

│ ARMCONTR.FNT

│ ARMFONT.FNT

│ armfont827.FNT

│ BUTTONS.FNT

│ COMIX.FNT

│ CONSOLE.FNT

│ CORBUTT.FNT

│ CORBUTTX.FNT

│ CORCONTR.FNT

│ COREFONT.FNT

│ Corefont827.FNT

│ COURIER.FNT

│ HATT12.FNT

│ HATT14.FNT

│ MSCRIPT.FNT

│ ROMAN10.FNT

│ ROMAN12.FNT

│ SMLFONT.FNT

│

├───gamedata

│ ALLSOUND.TDF

│ BuildInfo.tdf

│ CATEGORY.TDF

│ HELP.TDF

│ LOS.TDF

│ METEOR.TDF

│ MOVEINFO.TDF

│ SIDEDATA.TDF

│ SOUND.TDF

│ Translate.tdf

│ UNITVIEW.TDF

│

├───guis

│ ALLIES.GUI

│ ANYMSN.GUI

│ ARMAAP1.GUI

│ ARMACA1.GUI

│ ARMACA2.GUI

│ ARMACK1.GUI

│ ARMACK2.GUI

│ ARMACV1.GUI

│ ARMACV2.GUI

│ ARMALAB1.GUI

│ ARMAMD1.GUI

│ ARMAP1.GUI

│ ARMASY1.GUI

│ ARMAVP1.GUI

│ ARMAVP2.GUI

│ ARMBUILD.GUI

│ ARMBUTT.FNT

│ ARMCA1.GUI

│ ARMCA2.GUI

│ ARMCA3.GUI

│ ARMCK1.GUI

│ ARMCK2.GUI

│ ARMCK3.GUI

│ ARMCOM1.GUI

│ ARMCOM2.GUI

│ ARMCS1.GUI

│ ARMCV1.GUI

│ ARMCV2.GUI

│ ARMCV3.GUI

│ ARMGEN.GUI

│ ARMLAB1.GUI

│ ARMMAIN.GUI

│ ARMMAIN2.GUI

│ ARMOPT.GUI

│ ARMSILO1.GUI

│ ARMSY1.GUI

│ ARMVP1.GUI

│ BLANK.GUI

│ BRIEF.GUI

│ BRIEFING.GUI

│ BRIEFX.GUI

│ BUILDING.GUI

│ BUTTONS.FNT

│ CDCHECK.GUI

│ CHATSEL.GUI

│ CMENU.GUI

│ CONTROL.GUI

│ CORAAP1.GUI

│ CORACA1.GUI

│ CORACA2.GUI

│ CORACK1.GUI

│ CORACK2.GUI

│ CORACV1.GUI

│ CORACV2.GUI

│ CORALAB1.GUI

│ CORAP1.GUI

│ CORASY1.GUI

│ CORAVP1.GUI

│ CORAVP2.GUI

│ CORBUILD.GUI

│ CORBUTT.FNT

│ CORCA1.GUI

│ CORCA2.GUI

│ CORCA3.GUI

│ CORCK1.GUI

│ CORCK2.GUI

│ CORCK3.GUI

│ CORCOM1.GUI

│ CORCOM2.GUI

│ CORCS1.GUI

│ CORCV1.GUI

│ CORCV2.GUI

│ CORCV3.GUI

│ CORFMD1.GUI

│ CORGEN.GUI

│ CORLAB1.GUI

│ CORMAIN.GUI

│ CORMAIN2.GUI

│ CORSILO1.GUI

│ CORSY1.GUI

│ CORVP1.GUI

│ CREDITS.GUI

│ ENDGAME.GUI

│ ENDMSN.GUI

│ ENDMULTI.GUI

│ ENERGY.GUI

│ EXITMENU.GUI

│ GAMMA.GUI

│ HELP.GUI

│ LOADGAME.GUI

│ LOADLIST.GUI

│ LOGOSEL.GUI

│ LOUNGE.GUI

│ LOUNGE2.GUI

│ MAINMENU.GUI

│ METAL.GUI

│ MISSION.GUI

│ MISSIONX.GUI

│ MODEM.GUI

│ MOREINFO.GUI

│ MSGBOX.GUI

│ MSNBRIEF.GUI

│ MUSIC.GUI

│ MUSICRT.GUI

│ NEWCAMP.GUI

│ NEWGAME.GUI

│ NEWMULTI.GUI

│ OPTION.GUI

│ PREFS.GUI

│ RESTART.GUI

│ restrict2.GUI

│ ROMAN10.FNT

│ ROMAN12.FNT

│ SAVEGAME.GUI

│ SAVELIST.GUI

│ SCORE.GUI

│ SELCAMP.GUI

│ SELCAMPX.GUI

│ SELGAME.GUI

│ SELMAP.GUI

│ SELPROV.GUI

│ SELPROVX.GUI

│ SELSIDE.GUI

│ SELVMODE.GUI

│ SERIAL.GUI

│ SHARE.GUI

│ SIDESEL.GUI

│ SINGLE.GUI

│ SKIRMISH.GUI

│ SOUND.GUI

│ SOUNDS.GUI

│ SOUNDSRT.GUI

│ SPEEDS.GUI

│ SPEEDSRT.GUI

│ SSIDESEL.GUI

│ ssidesel1.gui

│ STARTOPT.GUI

│ TABMENU.GUI

│ TALK.GUI

│ TALK2.GUI

│ TCP.GUI

│ TIMEOUT.GUI

│ UNITINFO.GUI

│ Unitinfox.GUI

│ VIEWMAP.GUI

│ VISUALRT.GUI

│ VISUALS.GUI

│ WARP.GUI

│ YESORNO.GUI

│

├───objects3d

│ 1x1A.3do

│ 1x1B.3do

│ 1x1C.3do

│ 1x1D.3do

│ 1x1E.3do

│ 1x1F.3do

│ 2x2A.3do

│ 2x2B.3do

│ 2x2C.3do

│ 2x2D.3do

│ 2x2E.3do

│ 2x2F.3do

│ 3x3A.3do

│ 3x3B.3do

│ 3x3C.3do

│ 3x3D.3do

│ 3x3E.3do

│ 3x3F.3do

│ 4x4A.3do

│ 4x4B.3do

│ 4x4C.3do

│ 4x4D.3do

│ 4x4E.3do

│ 4x4F.3do

│ 5x5A.3do

│ 5x5B.3do

│ 5x5C.3do

│ 5x5D.3do

│ 6x6A.3do

│ 6x6B.3do

│ 6x6C.3do

│ 6x6D.3do

│ 7x7A.3do

│ 7x7B.3do

│ 7x7C.3do

│ 7x7D.3do

│ amdrocket.3do

│ ARMaap.3do

│ armaap_dead.3do

│ ARMaca.3do

│ armaca_dead.3do

│ armack.3do

│ armack_dead.3do

│ armacv.3do

│ armacv_dead.3do

│ armalab.3do

│ armalab_dead.3do

│ ARMamd.3do

│ armamd_dead.3do

│ armanni.3do

│ armanni_dead.3do

│ armap.3do

│ armap_dead.3do

│ armarad.3do

│ armarad_dead.3do

│ armaser.3do

│ armaser_dead.3do

│ armasp.3do

│ armasp_dead.3do

│ armasy.3do

│ armasy_dead.3do

│ armatlas.3do

│ armatlas_dead.3do

│ armavp.3do

│ armavp_dead.3do

│ armbats.3do

│ armbats_dead.3do

│ armbrawl.3do

│ armbrawl_dead.3do

│ armbrtha.3do

│ armbrtha_dead.3do

│ armbull.3do

│ armbull_dead.3do

│ armca.3do

│ armcarry.3do

│ armcarry_dead.3do

│ armca_dead.3do

│ armck.3do

│ armck_dead.3do

│ armcom.3do

│ armcroc.3do

│ armcroc_dead.3do

│ armcrus.3do

│ armcrus_dead.3do

│ armcs.3do

│ armcs_dead.3do

│ armcv.3do

│ armcv_dead.3do

│ armdrag.3do

│ armestor.3do

│ armestor_dead.3do

│ armfast.3do

│ armfast_dead.3do

│ armfav.3do

│ armfav_dead.3do

│ armfido.3do

│ armfido_dead.3do

│ armfig.3do

│ armfig_dead.3do

│ armflash.3do

│ armflash_dead.3do

│ armfus.3do

│ armfus_dead.3do

│ armgate.3do

│ armgate_dead.3do

│ ARMgeo.3do

│ armgeo_dead.3do

│ armguard.3do

│ armguard_dead.3do

│ armham.3do

│ armham_dead.3do

│ armhawk.3do

│ armhawk_dead.3do

│ armhlt.3do

│ armhlt_dead.3do

│ armjam.3do

│ armjam_dead.3do

│ armjeth.3do

│ armjeth_dead.3do

│ armlab.3do

│ armlab_dead.3do

│ armlance.3do

│ armlance_dead.3do

│ armllt.3do

│ armllt_dead.3do

│ armmakr.3do

│ armmakr_dead.3do

│ armmart.3do

│ armmart_dead.3do

│ armmerl.3do

│ armmerl_dead.3do

│ armmex.3do

│ armmex_dead.3do

│ armmoho.3do

│ armmoho_dead.3do

│ ARMMship.3do

│ armmship_dead.3do

│ armmstor.3do

│ armmstor_dead.3do

│ armpeep.3do

│ armpeep_dead.3do

│ armpnix.3do

│ armpnix_dead.3do

│ armpt.3do

│ armpt_dead.3do

│ armpw.3do

│ armpw_dead.3do

│ armrad.3do

│ armrad_dead.3do

│ armrl.3do

│ armrl_dead.3do

│ armrock.3do

│ armrock_dead.3do

│ ARMroy.3do

│ armroy_dead.3do

│ armsam.3do

│ armsam_dead.3do

│ armseer.3do

│ armseer_dead.3do

│ armsilo.3do

│ armsilo_dead.3do

│ armsolar.3do

│ armsolar_dead.3do

│ armsonar.3do

│ armsonar_dead.3do

│ armspid.3do

│ armspid_dead.3do

│ armstump.3do

│ armstump_dead.3do

│ armsub.3do

│ armsubk.3do

│ armsubk_dead.3do

│ armsub_dead.3do

│ armsy.3do

│ armsy_dead.3do

│ armthund.3do

│ armthund_dead.3do

│ armtide.3do

│ armtide_dead.3do

│ armtl.3do

│ armtl_dead.3do

│ armtship.3do

│ armtship_dead.3do

│ armvader.3do

│ armvader_dead.3do

│ armvp.3do

│ armvp_dead.3do

│ armwin.3do

│ armwin_dead.3do

│ armzeus.3do

│ armzeus_dead.3do

│ Asteroid1.3do

│ Asteroid2.3do

│ Asteroid3.3do

│ Asteroid4.3do

│ Asteroid5.3do

│ Asteroid6.3do

│ ballmiss.3do

│ bomb.3do

│ bomb1.3do

│ bomb2.3do

│ bomb3.3do

│ coraap.3do

│ coraap_dead.3do

│ coraca.3do

│ coraca_dead.3do

│ corack.3do

│ corack_dead.3do

│ coracv.3do

│ coracv_dead.3do

│ corak.3do

│ corak_dead.3do

│ coralab.3do

│ coralab_dead.3do

│ corap.3do

│ corape.3do

│ corape_dead.3do

│ corap_dead.3do

│ corarad.3do

│ corarad_dead.3do

│ corasp.3do

│ corasp_dead.3do

│ corasy.3do

│ corasy_dead.3do

│ coravp.3do

│ coravp_dead.3do

│ corbats.3do

│ corbats_dead.3do

│ corbuild.3do

│ corbuild_dead.3do

│ corca.3do

│ corcan.3do

│ corcan_dead.3do

│ corcarry.3do

│ corcarry_dead.3do

│ corca_dead.3do

│ corck.3do

│ corck_dead.3do

│ corcom.3do

│ corcrash.3do

│ corcrash_dead.3do

│ corcrus.3do

│ corcrus_dead.3do

│ corcs.3do

│ corcs_dead.3do

│ corcv.3do

│ corcv_dead.3do

│ cordoom.3do

│ cordoom_dead.3do

│ cordrag.3do

│ cordrag_dead.3do

│ corestor.3do

│ corestor_dead.3do

│ coreter.3do

│ coreter_dead.3do

│ corfav.3do

│ corfav_dead.3do

│ corfink.3do

│ corfink_dead.3do

│ corfmd.3do

│ corfmd_dead.3do

│ corfus.3do

│ corfus_dead.3do

│ corgate.3do

│ corgate_dead.3do

│ corgator.3do

│ corgator_dead.3do

│ corgeo.3do

│ corgeo_dead.3do

│ corgol.3do

│ corgol_dead.3do

│ corhlt.3do

│ corhlt_dead.3do

│ corhurc.3do

│ corhurc_dead.3do

│ corint.3do

│ corint_dead.3do

│ corlab.3do

│ corlab_dead.3do

│ corllt.3do

│ corllt_dead.3do

│ cormakr.3do

│ cormakr_dead.3do

│ cormart.3do

│ cormart_dead.3do

│ cormex.3do

│ cormex_dead.3do

│ cormist.3do

│ cormist_dead.3do

│ cormoho.3do

│ cormoho_dead.3do

│ cormship.3do

│ cormship_dead.3do

│ cormstor.3do

│ cormstor_dead.3do

│ corpt.3do

│ corpt_dead.3do

│ corpun.3do

│ corpun_dead.3do

│ corpyro.3do

│ corpyro_dead.3do

│ corrad.3do

│ corrad_dead.3do

│ corraid.3do

│ corraid_dead.3do

│ correap.3do

│ correap_dead.3do

│ corrl.3do

│ corrl_dead.3do

│ corroach.3do

│ corroach_dead.3do

│ corroy.3do

│ corroy_dead.3do

│ corseal.3do

│ corseal_dead.3do

│ corshad.3do

│ corshad_dead.3do

│ corshark.3do

│ corshark_dead.3do

│ corshiprckt1.3do

│ corsilo.3do

│ corsilo_dead.3do

│ corsolar.3do

│ corsolar_dead.3do

│ corsonar.3do

│ corsonar_dead.3do

│ corspec.3do

│ corspec_dead.3do

│ corstorm.3do

│ corstorm_dead.3do

│ corsub.3do

│ corsub_dead.3do

│ corsy.3do

│ corsy_dead.3do

│ corthud.3do

│ corthud_dead.3do

│ cortide.3do

│ cortide_dead.3do

│ cortitan.3do

│ cortitan_dead.3do

│ cortl.3do

│ cortl_dead.3do

│ cortruck.3do

│ cortruck_dead.3do

│ cortship.3do

│ cortship_dead.3do

│ corvalk.3do

│ corvalk_dead.3do

│ corvamp.3do

│ corvamp_dead.3do

│ corveng.3do

│ corveng_dead.3do

│ corvp.3do

│ corvp_dead.3do

│ corvrad.3do

│ corvrad_dead.3do

│ corvroc.3do

│ corvrocket.3do

│ corvroc_dead.3do

│ corwin.3do

│ corwin_dead.3do

│ crblmssl.3do

│ deadtank.3do

│ DepthCharge.3do

│ dgun.3do

│ fmdmisl.3do

│ jefftest.3do

│ missile.3do

│ missle1.3do

│ missle2.3do

│ missle3.3do

│ nrgyshla.3do

│ nrgyshlb.3do

│ plasma.3do

│ rocket.3do

│ torpedo.3do

│

├───palettes

│ GUIPAL.PAL

│ GUIPAL.PCX

│ PALETTE.ALP

│ PALETTE.LHT

│ PALETTE.PAL

│ PALETTE.SHD

│

├───scripts

│ ARMAAP.BOS

│ ARMAAP.COB

│ ARMACA.BOS

│ ARMACA.COB

│ ARMACK.BOS

│ ARMACK.COB

│ ARMACV.BOS

│ ARMACV.COB

│ ARMALAB.BOS

│ ARMALAB.COB

│ ARMAMD.BOS

│ ARMAMD.COB

│ ARMANNI.BOS

│ ARMANNI.COB

│ ARMAP.BOS

│ ARMAP.COB

│ ARMARAD.BOS

│ ARMARAD.COB

│ ARMASER.BOS

│ ARMASER.COB

│ ARMASP.BOS

│ ARMASP.COB

│ ARMASY.BOS

│ ARMASY.COB

│ ARMATLAS.BOS

│ ARMATLAS.COB

│ ARMAVP.BOS

│ ARMAVP.COB

│ ARMBATS.BOS

│ ARMBATS.COB

│ ARMBRAWL.BOS

│ ARMBRAWL.COB

│ ARMBRTHA.BOS

│ ARMBRTHA.COB

│ ARMBULL.BOS

│ ARMBULL.COB

│ ARMCA.BOS

│ ARMCA.COB

│ ARMCARRY.BOS

│ ARMCARRY.COB

│ ARMCK.BOS

│ ARMCK.COB

│ ARMCOM.BOS

│ ARMCOM.COB

│ ARMCROC.BOS

│ ARMCROC.COB

│ ARMCRUS.BOS

│ ARMCRUS.COB

│ ARMCS.BOS

│ ARMCS.COB

│ ARMCV.BOS

│ ARMCV.COB

│ ARMDRAG.BOS

│ ARMDRAG.COB

│ ARMESTOR.BOS

│ ARMESTOR.COB

│ ARMFAST.BOS

│ ARMFAST.COB

│ ARMFAV.BOS

│ ARMFAV.COB

│ ARMFIDO.BOS

│ ARMFIDO.COB

│ ARMFIG.BOS

│ ARMFIG.COB

│ ARMFLASH.BOS

│ ARMFLASH.COB

│ ARMFUS.BOS

│ ARMFUS.COB

│ ARMGATE.BOS

│ ARMGATE.COB

│ ARMGEO.BOS

│ ARMGEO.COB

│ ARMGUARD.BOS

│ ARMGUARD.COB

│ ARMHAM.BOS

│ ARMHAM.COB

│ ARMHAWK.BOS

│ ARMHAWK.COB

│ ARMHLT.BOS

│ ARMHLT.COB

│ ARMJAM.BOS

│ ARMJAM.COB

│ ARMJETH.BOS

│ ARMJETH.COB

│ ARMLAB.BOS

│ ARMLAB.COB

│ ARMLANCE.BOS

│ ARMLANCE.COB

│ ARMLLT.BOS

│ ARMLLT.COB

│ ARMMAKR.BOS

│ ARMMAKR.COB

│ ARMMART.BOS

│ ARMMART.COB

│ ARMMERL.BOS

│ ARMMERL.COB

│ ARMMEX.BOS

│ ARMMEX.COB

│ ARMMOHO.BOS

│ ARMMOHO.COB

│ ARMMSHIP.BOS

│ ARMMSHIP.COB

│ ARMMSTOR.BOS

│ ARMMSTOR.COB

│ ARMPEEP.BOS

│ ARMPEEP.COB

│ ARMPNIX.BOS

│ ARMPNIX.COB

│ ARMPT.BOS

│ ARMPT.COB

│ ARMPW.BOS

│ ARMPW.COB

│ ARMRAD.BOS

│ ARMRAD.COB

│ ARMRL.BOS

│ ARMRL.COB

│ ARMROCK.BOS

│ ARMROCK.COB

│ ARMROY.BOS

│ ARMROY.COB

│ ARMSAM.BOS

│ ARMSAM.COB

│ ARMSEER.BOS

│ ARMSEER.COB

│ ARMSILO.BOS

│ ARMSILO.COB

│ ARMSOLAR.BOS

│ ARMSOLAR.COB

│ ARMSONAR.BOS

│ ARMSONAR.COB

│ ARMSPID.BOS

│ ARMSPID.COB

│ ARMSTUMP.BOS

│ ARMSTUMP.COB

│ ARMSUB.BOS

│ ARMSUB.COB

│ ARMSUBK.BOS

│ ARMSUBK.COB

│ ARMSY.BOS

│ ARMSY.COB

│ ARMTHUND.BOS

│ ARMTHUND.COB

│ ARMTIDE.BOS

│ ARMTIDE.COB

│ ARMTL.BOS

│ ARMTL.COB

│ ARMTSHIP.BOS

│ ARMTSHIP.COB

│ ARMVADER.BOS

│ ARMVADER.COB

│ ARMVP.BOS

│ ARMVP.COB

│ ARMWIN.BOS

│ ARMWIN.COB

│ ARMZEUS.BOS

│ ARMZEUS.COB

│ COMPILE.BAT

│ CORAAP.BOS

│ CORAAP.COB

│ CORACA.BOS

│ CORACA.COB

│ CORACK.BOS

│ CORACK.COB

│ CORACV.BOS

│ CORACV.COB

│ CORAK.BOS

│ CORAK.COB

│ CORALAB.BOS

│ CORALAB.COB

│ CORAP.BOS

│ CORAP.COB

│ CORAPE.BOS

│ CORAPE.COB

│ CORARAD.BOS

│ CORARAD.COB

│ CORASP.BOS

│ CORASP.COB

│ CORASY.BOS

│ CORASY.COB

│ CORAVP.BOS

│ CORAVP.COB

│ CORBATS.BOS

│ CORBATS.COB

│ CORBUILD.BOS

│ CORBUILD.COB

│ CORCA.BOS

│ CORCA.COB

│ CORCAN.BOS

│ CORCAN.COB

│ CORCARRY.BOS

│ CORCARRY.COB

│ CORCK.BOS

│ CORCK.COB

│ CORCOM.BOS

│ CORCOM.COB

│ CORCRASH.BOS

│ CORCRASH.COB

│ CORCRUS.BOS

│ CORCRUS.COB

│ CORCS.BOS

│ CORCS.COB

│ CORCV.BOS

│ CORCV.COB

│ CORDOOM.BOS

│ CORDOOM.COB

│ CORDRAG.BOS

│ CORDRAG.COB

│ CORESTOR.BOS

│ CORESTOR.COB

│ CORETER.BOS

│ CORETER.COB

│ CORFAV.BOS

│ CORFAV.COB

│ CORFINK.BOS

│ CORFINK.COB

│ CORFMD.BOS

│ CORFMD.COB

│ CORFUS.BOS

│ CORFUS.COB

│ CORGATE.BOS

│ CORGATE.COB

│ CORGATOR.BOS

│ CORGATOR.COB

│ CORGEO.BOS

│ CORGEO.COB

│ CORGOL.BOS

│ CORGOL.COB

│ CORHLT.BOS

│ CORHLT.COB

│ CORHURC.BOS

│ CORHURC.COB

│ CORINT.BOS

│ CORINT.COB

│ CORLAB.BOS

│ CORLAB.COB

│ CORLLT.BOS

│ CORLLT.COB

│ CORMAKR.BOS

│ CORMAKR.COB

│ CORMART.BOS

│ CORMART.COB

│ CORMEX.BOS

│ CORMEX.COB

│ CORMIST.BOS

│ CORMIST.COB

│ CORMOHO.BOS

│ CORMOHO.COB

│ CORMSHIP.BOS

│ CORMSHIP.COB

│ CORMSTOR.BOS

│ CORMSTOR.COB

│ CORPT.BOS

│ CORPT.COB

│ CORPUN.BOS

│ CORPUN.COB

│ CORPYRO.BOS

│ CORPYRO.COB

│ CORRAD.BOS

│ CORRAD.COB

│ CORRAID.BOS

│ CORRAID.COB

│ CORREAP.BOS

│ CORREAP.COB

│ CORRL.BOS

│ CORRL.COB

│ CORROACH.BOS

│ CORROACH.COB

│ CORROY.BOS

│ CORROY.COB

│ CORSEAL.BOS

│ CORSEAL.COB

│ CORSHAD.BOS

│ CORSHAD.COB

│ CORSHARK.BOS

│ CORSHARK.COB

│ CORSILO.BOS

│ CORSILO.COB

│ CORSOLAR.BOS

│ CORSOLAR.COB

│ CORSONAR.BOS

│ CORSONAR.COB

│ CORSPEC.BOS

│ CORSPEC.COB

│ CORSTORM.BOS

│ CORSTORM.COB

│ CORSUB.BOS

│ CORSUB.COB

│ CORSY.BOS

│ CORSY.COB

│ CORTHUD.BOS

│ CORTHUD.COB

│ CORTIDE.BOS

│ CORTIDE.COB

│ CORTITAN.BOS

│ CORTITAN.COB

│ CORTL.BOS

│ CORTL.COB

│ CORTRUCK.BOS

│ CORTRUCK.COB

│ CORTSHIP.BOS

│ CORTSHIP.COB

│ CORVALK.BOS

│ CORVALK.COB

│ CORVAMP.BOS

│ CORVAMP.COB

│ CORVENG.BOS

│ CORVENG.COB

│ CORVP.BOS

│ CORVP.COB

│ CORVRAD.BOS

│ CORVRAD.COB

│ CORVROC.BOS

│ CORVROC.COB

│ CORWIN.BOS

│ CORWIN.COB

│ EXPTYPE.H

│ HELP.H

│ HITWEAP.H

│ ROCKUNIT.H

│ SFXTYPE.H

│ SMOKEUNIT.H

│ STATECHG.H

│ STDSCRPT.H

│ STDTANK.H

│ YARD.H

│

├───sounds

│ ANNI.WAV

│ ANNIGUN1.WAV

│ ARMSML1.WAV

│ ARMSML2.WAV

│ ARMSML3.WAV

│ ARMSML4.WAV

│ BEEP1.WAV

│ BEEP2.WAV

│ BEEP3.WAV

│ BEEP4.WAV

│ BEEP5.WAV

│ BEEP6.WAV

│ BERTHA1.WAV

│ BERTHA2.WAV

│ BERTHA3.WAV

│ BERTHA4.WAV

│ BERTHA5.WAV

│ BERTHA6.WAV

│ BOMBREL.WAV

│ BUILD1.WAV

│ BUILD2.WAV

│ BURN01.WAV

│ BURN02.WAV

│ BURN03.WAV

│ BURN1.WAV

│ BURNLRG.WAV

│ BURNMED.WAV

│ BURNSML.WAV

│ BUTMAIN.WAV

│ BUTMAIN1.WAV

│ BUTMAIN2.WAV

│ BUTMAIN3.WAV

│ BUTMAIN4.WAV

│ BUTNAGR1.WAV

│ BUTNAGR2.WAV

│ BUTNMBL1.WAV

│ BUTNMBL2.WAV

│ BUTNOPTN.WAV

│ BUTNSID1.WAV

│ BUTNSID2.WAV

│ BUTNSID3.WAV

│ BUTNSKIR.WAV

│ BUTOPTN.WAV

│ BUTSCRO1.WAV

│ BUTSCRO2.WAV

│ BUTTN01.WAV

│ BUTTN02.WAV

│ BUTTN06.WAV

│ BUTTON1.WAV

│ BUTTON10.WAV

│ BUTTON11.WAV

│ BUTTON12.WAV

│ BUTTON13.WAV

│ BUTTON2.WAV

│ BUTTON3.WAV

│ BUTTON4.WAV

│ BUTTON5.WAV

│ BUTTON6.WAV

│ BUTTON7.WAV

│ BUTTON8.WAV

│ BUTTON9.WAV

│ CANCEL1.WAV

│ CANCEL2.WAV

│ CANLITE1.WAV

│ CANLITE2.WAV

│ CANLITE3.WAV

│ CANNHVY1.WAV

│ CANNHVY2.WAV

│ CANNHVY3.WAV

│ CANNHVY4.WAV

│ CANNHVY5.WAV

│ CANNON1.WAV

│ CANNON2.WAV

│ CANNON3.WAV

│ CANTDO.WAV

│ CANTDO1.WAV

│ CANTDO2.WAV

│ CANTDO3.WAV

│ CANTDO4.WAV

│ CANZIP1.WAV

│ CANZIP2.WAV

│ CAPTURE1.WAV

│ CAPTURE2.WAV

│ CDOGGY.WAV

│ COMFIRE1.WAV

│ COMFIRE2.WAV

│ COUNT1.WAV

│ COUNT2.WAV

│ COUNT3.WAV

│ COUNT4.WAV

│ COUNT5.WAV

│ COUNT6.WAV

│ DEBRIS1.WAV

│ DEBRIS2.WAV

│ DEBRIS3.WAV

│ DEBRIS4.WAV

│ DEBRIS5.WAV

│ DEBRIS6.WAV

│ DEPTH1.WAV

│ DEPTH2.WAV

│ DEPTH3.WAV

│ DISIGUN1.WAV

│ DOOM.WAV

│ DRONE1.WAV

│ DRONE2.WAV

│ DRONE3.WAV

│ EMGPULS1.WAV

│ EMGPULSE.WAV

│ ENERGYN1.WAV

│ ENERGYN2.WAV

│ EXPLODE.WAV

│ EXPLODE2.WAV

│ FLAMHVY1.WAV

│ FLAMHVY2.WAV

│ FLAMHVY3.WAV

│ FLAMLIT1.WAV

│ FLAMLIT2.WAV

│ FLAMLIT3.WAV

│ FUSION1.WAV

│ FUSION2.WAV

│ GEOTHRM1.WAV

│ GEOTHRM2.WAV

│ GUN110.WAV

│ GUNHUGE.WAV

│ GUNRAPID.WAV

│ HONK.WAV

│ KBARMMOV.WAV

│ KBARMSE1.WAV

│ KBARMSEL.WAV

│ KBARMSTP.WAV

│ KBCORMOV.WAV

│ KBCORSEL.WAV

│ KBCORSTP.WAV

│ KCARMACT.WAV

│ KCARMMOV.WAV

│ KCARMSEL.WAV

│ KCARMSTP.WAV

│ KCCORSEL.WAV

│ KCCORSTP.WAV

│ KCORMOV.WAV

│ KLOAK1.WAV

│ KLOAK1UN.WAV

│ KLOAK2.WAV

│ KLOAK2UN.WAV

│ LAMEBURN.WAV

│ LARGEGUN.WAV

│ LASER.WAV

│ LASHIT.WAV

│ LASRCAN1.WAV

│ LASRCAN2.WAV

│ LASRFAST.WAV

│ LASRFIR1.WAV

│ LASRFIR2.WAV

│ LASRFIR3.WAV

│ LASRHIT1.WAV

│ LASRHIT2.WAV

│ LASRHIT3.WAV

│ LASRHVY1.WAV

│ LASRHVY2.WAV

│ LASRHVY3.WAV

│ LASRLIT1.WAV

│ LASRLIT2.WAV

│ LASRLIT3.WAV

│ LASRMAS1.WAV

│ LASRMAS2.WAV

│ LASRMAS3.WAV

│ LASRSLOW.WAV

│ LGHTHVY1.WAV

│ LOADAIR.WAV

│ LOADWTR1.WAV

│ LOADWTR2.WAV

│ MECHANI.WAV

│ METALNO1.WAV

│ METALNO2.WAV

│ METLOFF1.WAV

│ METLOFF2.WAV

│ METLON1.WAV

│ METLON2.WAV

│ METLRUN1.WAV

│ METLRUN2.WAV

│ MEXOFF1.WAV

│ MEXOFF2.WAV

│ MEXON1.WAV

│ MEXON2.WAV

│ MEXRUN1.WAV

│ MEXRUN2.WAV

│ MISICBM1.WAV

│ MISICBM2.WAV

│ MISICBM3.WAV

│ MISLHVY1.WAV

│ MISLHVY2.WAV

│ MISLHVY3.WAV

│ MISLITE1.WAV

│ MISLITE2.WAV

│ MISLITE3.WAV

│ MISSTAR1.WAV

│ MISSTAR2.WAV

│ MOHOOFF1.WAV

│ MOHOOFF2.WAV

│ MOHOON1.WAV

│ MOHOON2.WAV

│ MOHORUN1.WAV

│ MOHORUN2.WAV

│ NANLATH1.WAV

│ NANLATH2.WAV

│ PAIRACTV.WAV

│ PAIRWORK.WAV

│ PHASER.WAV

│ PLABACTV.WAV

│ PLABWORK.WAV

│ PLASHVY1.WAV

│ PLASMED1.WAV

│ PLASSML1.WAV

│ PSHPACTV.WAV

│ PSHPWORK.WAV

│ PVEHACTV.WAV

│ PVEHWORK.WAV

│ RADADDE1.WAV

│ RADADDE2.WAV

│ RADADVN1.WAV

│ RADADVN2.WAV

│ RADAR1.WAV

│ RADAR2.WAV

│ RADARDE1.WAV

│ RADARDE2.WAV

│ RADJAM1.WAV

│ RADJAM2.WAV

│ RANGE1.WAV

│ RANGE2.WAV

│ RECLAIM1.WAV

│ RECLAIM2.WAV

│ REPAIR1.WAV

│ REPAIR2.WAV

│ ROCKET.WAV

│ ROCKHVY1.WAV

│ ROCKHVY2.WAV

│ ROCKHVY3.WAV

│ ROCKLIT1.WAV

│ ROCKLIT2.WAV

│ ROCKLIT3.WAV

│ ROCKXPL1.WAV

│ ROCKXPL2.WAV

│ ROCKXPL3.WAV

│ SERVLARG.WAV

│ SERVLRG1.WAV

│ SERVLRG2.WAV

│ SERVLRG3.WAV

│ SERVLRG4.WAV

│ SERVMD01.WAV

│ SERVMD02.WAV

│ SERVMD03.WAV

│ SERVMED1.WAV

│ SERVMED2.WAV

│ SERVMED3.WAV

│ SERVMED4.WAV

│ SERVROC1.WAV

│ SERVSML1.WAV

│ SERVSML2.WAV

│ SERVSML3.WAV

│ SERVSML4.WAV

│ SERVSML5.WAV

│ SERVSML6.WAV

│ SERVTNY1.WAV

│ SERVTNY2.WAV

│ SHARMMOV.WAV

│ SHARMSEL.WAV

│ SHARMSTP.WAV

│ SHCORMOV.WAV

│ SHCORSEL.WAV

│ SHCORSTP.WAV

│ SING.WAV

│ SOLAR1.WAV

│ SOLAR2.WAV

│ SONAR1.WAV

│ SONAR2.WAV

│ SONARDE1.WAV

│ SONARDE2.WAV

│ SONARJAM.WAV

│ SPIDER.WAV

│ SPLSLRG.WAV

│ SPLSMED.WAV

│ SPLSSML.WAV

│ STORMTL1.WAV

│ STORMTL2.WAV

│ STORNGY1.WAV

│ STORNGY2.WAV

│ SUARMMOV.WAV

│ SUARMSEL.WAV

│ SUARMSTP.WAV

│ SUCORMOV.WAV

│ SUCORSEL.WAV

│ SUCORSTP.WAV

│ TARMMOVE.WAV

│ TARMSEL.WAV

│ TARMST0P.WAV

│ TCORMOVE.WAV

│ TCORSEL.WAV

│ TCORST0P.WAV

│ TIDEGEN1.WAV

│ TIDEGEN2.WAV

│ TORPEDO1.WAV

│ TORPEDO2.WAV

│ TREEMED.WAV

│ TURLGSO1.WAV

│ TURLGSO2.WAV

│ TURLONG1.WAV

│ TURMED1.WAV

│ TURMED2.WAV

│ TURMED3.WAV

│ TWRACTV1.WAV

│ TWRACTV2.WAV

│ TWRACTV3.WAV

│ TWRACTV4.WAV

│ TWRTUR63.WAV

│ TWRTURN1.WAV

│ TWRTURN2.WAV

│ TWRTURN3.WAV

│ TWRTURN4.WAV

│ UNITDONE.WAV

│ VARMMOVE.WAV

│ VARMSEL.WAV

│ VARMSTOP.WAV

│ VCORMOVE.WAV

│ VCORSEL.WAV

│ VCORSTOP.WAV

│ VICTORY2.WAV

│ VICTORY4.WAV

│ VTOLARAC.WAV

│ VTOLARLD.WAV

│ VTOLARMV.WAV

│ VTOLCRAC.WAV

│ VTOLCRLD.WAV

│ VTOLCRMV.WAV

│ WARNING1.WAV

│ WARNING2.WAV

│ WINDGEN1.WAV

│ WINDGEN2.WAV

│ XPLOBLD1.WAV

│ XPLOBLD2.WAV

│ XPLOBLD3.WAV

│ XPLOCOM1.WAV

│ XPLODEP1.WAV

│ XPLODEP2.WAV

│ XPLODEP3.WAV

│ XPLOLRG1.WAV

│ XPLOLRG2.WAV

│ XPLOLRG3.WAV

│ XPLOLRG4.WAV

│ XPLOMAS1.WAV

│ XPLOMAS2.WAV

│ XPLOMAS3.WAV

│ XPLOMAS4.WAV

│ XPLOMED1.WAV

│ XPLOMED2.WAV

│ XPLOMED3.WAV

│ XPLOMED4.WAV

│ XPLONUK1.WAV

│ XPLONUK2.WAV

│ XPLONUK3.WAV

│ XPLONUK4.WAV

│ XPLOSML1.WAV

│ XPLOSML2.WAV

│ XPLOSML3.WAV

│ XPLOSML4.WAV

│

├───textures

│ ARMBLDG.GAF

│ ARMCAMO.GAF

│ ARMSHIPS.GAF

│ ARMVEHIC.GAF

│ CORBLDG.GAF

│ CORCAMO.GAF

│ CORSHIPS.GAF

│ CORVEHIC.GAF

│ LOGOS.GAF

│ WRECKAGE.GAF

│

├───unitpics

│ ARMAAP.PCX

│ ARMAC.PCX

│ ARMACA.PCX

│ ARMACK.PCX

│ ARMACV.PCX

│ ARMALAB.PCX

│ ARMAMD.PCX

│ ARMANNI.PCX

│ ARMAP.PCX

│ ARMARAD.PCX

│ ARMASER.PCX

│ ARMASP.PCX

│ ARMASY.PCX

│ ARMATLAS.PCX

│ ARMAVP.PCX

│ ARMBATS.PCX

│ ARMBRAWL.PCX

│ ARMBRTHA.PCX

│ ARMBULL.PCX

│ ARMCA.PCX

│ ARMCARRY.PCX

│ ARMCK.PCX

│ ARMCOM.PCX

│ ARMCROC.PCX

│ ARMCRUS.PCX

│ ARMCS.PCX

│ ARMCV.PCX

│ ARMDRAG.PCX

│ ARMESTOR.PCX

│ ARMFAST.PCX

│ ARMFAV.PCX

│ ARMFIDO.PCX

│ ARMFIG.PCX

│ ARMFLASH.PCX

│ ARMFUS.PCX

│ ARMGATE.PCX

│ ARMGEO.PCX

│ ARMGUARD.PCX

│ ARMHAM.PCX

│ ARMHAWK.PCX

│ ARMHLT.PCX

│ ARMJAM.PCX

│ ARMJETH.PCX

│ ARMLAB.PCX

│ ARMLANCE.PCX

│ ARMLLT.PCX

│ ARMMAKR.PCX

│ ARMMART.PCX

│ ARMMERL.PCX

│ ARMMEX.PCX

│ ARMMOHO.PCX

│ ARMMSHIP.PCX

│ ARMMSTOR.PCX

│ ARMNIX.PCX

│ ARMPEEP.PCX

│ ARMPNIX.PCX

│ ARMPT.PCX

│ ArmPW.PCX

│ ARMRAD.PCX

│ ARMRL.PCX

│ ARMROCK.PCX

│ ARMROY.PCX

│ ARMSAM.PCX

│ ARMSEER.PCX

│ ARMSILO.PCX

│ ARMSOLAR.PCX

│ ARMSONAR.PCX

│ ARMSPID.PCX

│ ARMSTUMP.PCX

│ ARMSUB.PCX

│ ARMSUBK.PCX

│ ARMSY.PCX

│ ARMTHUND.PCX

│ ARMTID.PCX

│ ARMTIDE.PCX

│ ARMTL.PCX

│ ARMTSHIP.PCX

│ ARMVADER.PCX

│ ARMVP.PCX

│ ARMVRAD.PCX

│ ARMWIN.PCX

│ ARMZEUS.PCX

│ CORAAP.PCX

│ CORAC.PCX

│ CORACA.PCX

│ CORACK.PCX

│ CORACV.PCX

│ CORAK.PCX

│ CORALAB.PCX

│ CORAP.PCX

│ CORAPE.PCX

│ CORARAD.PCX

│ CORASP.PCX

│ CORASY.PCX

│ CORAVP.PCX

│ CORBATS.PCX

│ CORCA.PCX

│ CORCAN.PCX

│ CORCARRY.PCX

│ CORCK.PCX

│ CORCOM.PCX

│ CORCRASH.PCX

│ CORCRUS.PCX

│ CORCS.PCX

│ CORCV.PCX

│ CORDOOM.PCX

│ CORDRAG.PCX

│ CORESTOR.PCX

│ CORETER.PCX

│ CORFAV.PCX

│ CORFING.PCX

│ CORFINK.PCX

│ CORFMD.PCX

│ CORFUS.PCX

│ CORGATE.PCX

│ CORGATOR.PCX

│ CORGEO.PCX

│ CORGOL.PCX

│ CORHLT.PCX

│ CORHURC.PCX

│ CORINT.PCX

│ CORLAB.PCX

│ CORLLT.PCX

│ CORMAKR.PCX

│ CORMART.PCX

│ CORMEX.PCX

│ CORMIST.PCX

│ CORMOHO.PCX

│ CORMSHIP.PCX

│ CORMSTOR.PCX

│ CORPT.PCX

│ CORPUN.PCX

│ CORPYRO.PCX

│ CORRAD.PCX

│ CORRAID.PCX

│ CORREAP.PCX

│ CORRL.PCX

│ CORROACH.PCX

│ CORROY.PCX

│ CORSEAL.PCX

│ CORSHAD.PCX

│ CORSHARK.PCX

│ CORSILO.PCX

│ CORSOLAR.PCX

│ CORSONAR.PCX

│ CORSPEC.PCX

│ CORSTORM.PCX

│ CORSUB.PCX

│ CORSY.PCX

│ CORTHUD.PCX

│ CORTIDE.PCX

│ CORTITAN.PCX

│ CORTL.PCX

│ CORTSHIP.PCX

│ CORVALK.PCX

│ CORVAMP.PCX

│ CORVENG.PCX

│ CORVP.PCX

│ CORVRAD.PCX

│ CORVROC.PCX

│ CORWIN.PCX

│

├───units

│ ALLUNITS.XLS

│ ARMAAP.FBI

│ ARMACA.FBI

│ ARMACK.FBI

│ ARMACV.FBI

│ ARMALAB.FBI

│ ARMAMD.FBI

│ ARMANNI.FBI

│ ARMAP.FBI

│ ARMARAD.FBI

│ ARMASER.FBI

│ ARMASP.FBI

│ ARMASY.FBI

│ ARMATLAS.FBI

│ ARMAVP.FBI

│ ARMBATS.FBI

│ ARMBRAWL.FBI

│ ARMBRTHA.FBI

│ ARMBULL.FBI

│ ARMCA.FBI

│ ARMCARRY.FBI

│ ARMCK.FBI

│ ARMCOM.FBI

│ ARMCROC.FBI

│ ARMCRUS.FBI

│ ARMCS.FBI

│ ARMCV.FBI

│ ARMDRAG.FBI

│ ARMESTOR.FBI

│ ARMFAST.FBI

│ ARMFAV.FBI

│ ARMFIDO.FBI

│ ARMFIG.FBI

│ ARMFLASH.FBI

│ ARMFUS.FBI

│ ARMGATE.FBI

│ ARMGEO.FBI

│ ARMGUARD.FBI

│ ARMHAM.FBI

│ ARMHAWK.FBI

│ ARMHLT.FBI

│ ARMJAM.FBI

│ ARMJETH.FBI

│ ARMLAB.FBI

│ ARMLANCE.FBI

│ ARMLLT.FBI

│ ARMMAKR.FBI

│ ARMMART.FBI

│ ARMMERL.FBI

│ ARMMEX.FBI

│ ARMMOHO.FBI

│ ARMMSHIP.FBI

│ ARMMSTOR.FBI

│ ARMPEEP.FBI

│ ARMPNIX.FBI

│ ARMPT.FBI

│ ARMPW.FBI

│ ARMRAD.FBI

│ ARMRL.FBI

│ ARMROCK.FBI

│ ARMROY.FBI

│ ARMSAM.FBI

│ ARMSEER.FBI

│ ARMSILO.FBI

│ ARMSOLAR.FBI

│ ARMSONAR.FBI

│ ARMSPID.FBI

│ ARMSTUMP.FBI

│ ARMSUB.FBI

│ ARMSUBK.FBI

│ ARMSY.FBI

│ ARMTHUND.FBI

│ ARMTIDE.FBI

│ ARMTL.FBI

│ ARMTSHIP.FBI

│ ARMVADER.FBI

│ ARMVP.FBI

│ ARMWIN.FBI

│ ARMZEUS.FBI

│ BUILDALL.BAT

│ CORAAP.FBI

│ CORACA.FBI

│ CORACK.FBI

│ CORACV.FBI

│ CORAK.FBI

│ CORALAB.FBI

│ CORAP.FBI

│ CORAPE.FBI

│ CORARAD.FBI

│ CORASP.FBI

│ CORASY.FBI

│ CORAVP.FBI

│ CORBATS.FBI

│ CORBUILD.FBI

│ CORCA.FBI

│ CORCAN.FBI

│ CORCARRY.FBI

│ CORCK.FBI

│ CORCOM.FBI

│ CORCRASH.FBI

│ CORCRUS.FBI

│ CORCS.FBI

│ CORCV.FBI

│ CORDOOM.FBI

│ CORDRAG.FBI

│ CORESTOR.FBI

│ CORETER.FBI

│ CORFAV.FBI

│ CORFINK.FBI

│ CORFMD.FBI

│ CORFUS.FBI

│ CORGATE.FBI

│ CORGATOR.FBI

│ CORGEO.FBI

│ CORGOL.FBI

│ CORHLT.FBI

│ CORHURC.FBI

│ CORINT.FBI

│ CORLAB.FBI

│ CORLLT.FBI

│ CORMAKR.FBI

│ CORMART.FBI

│ CORMEX.FBI

│ CORMIST.FBI

│ CORMOHO.FBI

│ CORMSHIP.FBI

│ CORMSTOR.FBI

│ CORPT.FBI

│ CORPUN.FBI

│ CORPYRO.FBI

│ CORRAD.FBI

│ CORRAID.FBI

│ CORREAP.FBI

│ CORRL.FBI

│ CORROACH.FBI

│ CORROY.FBI

│ CORSEAL.FBI

│ CORSHAD.FBI

│ CORSHARK.FBI

│ CORSILO.FBI

│ CORSOLAR.FBI

│ CORSONAR.FBI

│ CORSPEC.FBI

│ CORSTORM.FBI

│ CORSUB.FBI

│ CORSY.FBI

│ CORTHUD.FBI

│ CORTIDE.FBI

│ CORTITAN.FBI

│ CORTL.FBI

│ CORTRUCK.FBI

│ CORTSHIP.FBI

│ CORVALK.FBI

│ CORVAMP.FBI

│ CORVENG.FBI

│ CORVP.FBI

│ CORVRAD.FBI

│ CORVROC.FBI

│ CORWIN.FBI

│ FBI2XLS.PL

│ MAKEXLS.BAT

│ More.txt

│ XLS2FBI.PL

│

└───weapons

 CANNONS.TDF

 FIRES.TDF

 LASERS.TDF

 METEORS.TDF

 MISSILES.TDF

 ROCKETS.TDF

 UNITS.TDF

 WEAPONS.TDF
Totala2.hpi Contents

[image: image6.png]

TOTALA2.HPI

├───bitmaps

│ ARMBKG.PCX

│ armguibottile.pcx

│ armguisidetile.pcx

│ armguitoptile.pcx

│ battleroom2.pcx

│ battlestart.pcx

│ BUTTONS2.PCX

│ CDLOG256.PCX

│ CONSOLE.PCX

│ COREBKG.PCX

│ corecamp0.PCX

│ corecamp1.pcx

│ corguibottile.pcx

│ corguisidetile.pcx

│ corguitoptile.pcx

│ createnew.pcx

│ DHELP.PCX

│ DLoadgame2.pcx

│ DLoadList.pcx

│ DRESTART.PCX

│ DSavegame2.pcx

│ DSaveList.pcx

│ DSelectmap2.pcx

│ DVIEWMAP.PCX

│ ENDCAMP.PCX

│ FAILURE.PCX

│ FRONTBG.PCX

│ Frontbgold.pcx

│ Frontend1F.PCX

│ FrontendX.pcx

│ GROMMETS.PCX

│ Hattfont10.PCX

│ Hattfont11.PCX

│ IGButtons.pcx

│ IGMBRIEF.PCX

│ IGOPT0X.PCX

│ IGOPT1X.PCX

│ Igoptintx.pcx

│ igoptionsTEMP.PCX

│ Igoptmusx.pcx

│ Igoptsoux.pcx

│ IgoptTEMP.pcx

│ Igoptvisx.pcx

│ IGPATCH.PCX

│ Installgame.pcx

│ InstallgameJ.pcx

│ Installglam.pcx

│ LOADBAR.PCX

│ Loadgame2bg.pcx

│ LOGOTEST.BMP

│ mbriefarm.pcx

│ mbriefcor.pcx

│ Mission02Win.PCX

│ Mission02Win2.PCX

│ Mission02WinBW.pcx

│ newcampaign4.pcx

│ newcampaign4x.pcx

│ newcamplogos.pcx

│ OptInterface4x.pcx

│ Options4x.pcx

│ Optmusic4x.pcx

│ OptSound4x.pcx

│ OptVisual4x.pcx

│ OUTCOME0.PCX

│ OUTCOME1.PCX

│ playanygame4.pcx

│ Playgame2.pcx

│ Playgame2J.pcx

│ pressedbone.PCX

│ PREVIEW.PIX

│ SAVEGAME.PCX

│ selconnect2.pcx

│ selectgame2x.pcx

│ SINGLEBG.PCX

│ Skirmsetup4x.pcx

│ SMALLDOG.BMP

│ small_cavedog_logo.pcx

│ stagebuttons.pcx

│ STAR.PCX

│ TEMP.PCX

│ temptrans.pcx

│ TITLSCRN.PCX

│ UnitRestrict.pcx

│ UnitRestrict4x.pcx

│ UnitRestrict5x.pcx

│

└───maps

 Anteer Strait.ota

 Anteer Strait.tnt

 Ashap Plateau.ota

 Ashap Plateau.tnt

 Caldera's Rim.ota

 Caldera's Rim.tnt

 Coast To Coast.ota

 Coast To Coast.tnt

 Dark Side.ota

 Dark Side.tnt

 Etorrep Glacier.ota

 Etorrep Glacier.tnt

 Evad River Confluence.ota

 Evad River Confluence.tnt

 Fox Holes.ota

 Fox Holes.tnt

 Full Moon.ota

 Full Moon.tnt

 Gods of War.ota

 Gods of War.tnt

 Great Divide.ota

 Great Divide.tnt

 Greenhaven.ota

 Greenhaven.tnt

 Hundred Isles.ota

 Hundred Isles.tnt

 Kill The Middle.ota

 Kill The Middle.tnt

 King of the Hill.ota

 King of the Hill.tnt

 Lava & Two Hills.ota

 Lava & Two Hills.tnt

 Lava Alley.ota

 Lava Alley.tnt

 Lava Highground.ota

 Lava Highground.tnt

 Lava Mania.ota

 Lava Mania.tnt

 Lava Run.ota

 Lava Run.tnt

 Metal Heck.ota

 Metal Heck.tnt

 MULTIPLAY.TDF

 Over Crude Water.ota

 Over Crude Water.tnt

 Painted Desert.ota

 Painted Desert.tnt

 Pincushion.ota

 Pincushion.tnt

 Red Hot Lava.ota

 Red Hot Lava.tnt

 Red Planet.ota

 Red Planet.tnt

 Red Triangle.ota

 Red Triangle.tnt

 Ring Atoll.ota

 Ring Atoll.tnt

 Rock Alley.ota

 Rock Alley.tnt

 Seven Islands.ota

 Seven Islands.tnt

 SHERWOOD.OTA

 SHERWOOD.TNT

 Shore to Shore.ota

 Shore to Shore.tnt

 The Cold Place.ota

 The Cold Place.tnt

 The Desert Triad.ota

 The Desert Triad.tnt

 The Pass.ota

 The Pass.tnt

 Two Continents.ota

 Two Continents.tnt

 Yerrot Mountains.ota

 Yerrot Mountains.tnt
HPI File Format Documentation

[image: image7.png]

(from JoeD)

Warning: This is intended for use by people that already know what they're doing.

I'm a C programmer, so I'm doing things in C notation here, but I'll try to explain it so that those of you that don't speak C

will be able to understand. If you don't understand, write me at joed@cws.org and I'll try to clear things up.

I'm also a big believer in examples, so I'll be walking you through an HPI file as I explain.

The first part of the file is a header. Except for the copyright statement at the end, this is the only unencrypted portion of the

file. The header looks like this:

typedef struct _HPIHeader {

 long HPIMarker;

 /* 'HAPI' */

 long SaveMarker; /* 'BANK' if saved gamed */

 long DirectorySize; /* The size of the directory */

 long HeaderKey; /* Decrypt key */

 long Start; /* File offset of directory */

} HPIHeader;

Here's a hex dump of a sample header:

00000000 48 41 50 49 00 00 01 00 24 02 00 00 7D 00 00 00 HAPI....$...}...

00000010 14 00 00 00

Taken individually:

	HPIMarker
	This is just a marker. The value is always HAPI in ASCII. In hex, it's 0x49504148.

	

	SaveMarker

	If it's a saved game, the value is BANK in ASCII, or 0x4B4E4142 in hex. Save game files are something of a special case, and I haven't done much to try to decode those. The value in normal HPI files is 0x00010000, but I have no idea if this means anything. I just check for BANK, and ignore it otherwise.

	

	DirectorySize
	This is the size of the directory contained in the HPI file. Here, the value is 0x224, or 548 bytes. This includes the size of the header
	

	HeaderKey
	The decryption key. Its value is 0x0000007D. More on this later.

	

	Start
	The offset in the file where the directory starts. I have yet to see one that didn't start immediately after the header at offset 0x14, but you never know.
	

Now we know enough to read the directory. But first, a small implementation note. Instead of allocating a buffer of DirectorySize

bytes and then reading the directory into it, allocate a buffer of DirectorySize bytes, and read DirectorySize-Start bytes into the buffer

at position Start. This is because the directory contains pointers, but the pointers are relative to the start of the file, not the start

of the directory. By moving the directory down Start bytes into the buffer, we simplify the program. If we didn't do this, we'd have to

subtract Start from every offset, and that would be a royal pain.

Now some of you are undoubtedly looking at an HPI file with a hex dump

program, and saying "That sure doesn't look like a directory to me!" Well, you're right. That's because it's encrypted.

To decrypt it, first calculate the decryption key from the HeaderKey variable:

Key = NOT ((HeaderKey * 4) OR (HeaderKey >> 6))

Doing this on the 0x0000007D, you get FFFFFE0A (I think).

Here is the C code for the decryption routine. Since everything in the file is encrypted, I found it easier to combine the read and decryption

functions into one.

int ReadAndDecrypt(int fpos, char *buff, int buffsize)

/*

Read "buffsize" bytes from the HPI file at position "fpos" into "buff", and then decrypt it.

*/

{

 int count;

 int tkey;

 int result;

 /* first, position the file */

 fseek(HPIFile, fpos, SEEK_SET);

 /* read the data into buff */

 result = fread(buff, 1, buffsize, HPIFile);

 /* for each character in buff... */

 for (count = 0; count < buffsize; count++) {

 /* compute tkey = (fpos + count) XOR Key */

 tkey = (fpos + count) ^ Key;

/* and then decode the character:

 buff[count] = tkey XOR (NOT buff[count]) */

 buff[count] = tkey ^ ~buff[count];

 }

 /* result is the number of bytes actually read in,

 and should be equal to buffsize */

 return result;

}

Note that the position of the byte in the file (fpos+count) is used to decrypt.

And here is a decoded directory to make it easy to follow. Note that I loaded the actual directory starting at offset 0x14, so that the

first 0x14 bytes are all zeros. See the implementation note above.

All numbers here are 32-bit integers, ie "longs".

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000010 00 00 00 00 08 00 00 00 1C 00 00 00 64 00 00 00 d...

00000020 6A 00 00 00 01 97 00 00 00 A0 00 00 00 01 C6 00 j...............

00000030 00 00 CF 00 00 00 01 13 01 00 00 1D 01 00 00 01

00000040 66 01 00 00 6E 01 00 00 01 94 01 00 00 9D 01 00 f...n...........

00000050 00 01 C3 01 00 00 C9 01 00 00 01 EF 01 00 00 F7

00000060 01 00 00 01 61 6E 69 6D 73 00 01 00 00 00 72 00 anims.....r.

00000070 00 00 7B 00 00 00 8E 00 00 00 00 61 72 6D 66 6C ..{........armfl

00000080 61 6B 5F 67 61 64 67 65 74 2E 67 61 66 00 24 02 ak_gadget.gaf.$.

00000090 00 00 D8 2D 00 00 01 64 6F 77 6E 6C 6F 61 64 00 ...-...download.

000000A0 01 00 00 00 A8 00 00 00 B1 00 00 00 BD 00 00 00

000000B0 00 41 52 4D 46 4C 41 4B 2E 54 44 46 00 61 28 00 .ARMFLAK.TDF.a(.

000000C0 00 01 01 00 00 01 66 65 61 74 75 72 65 73 00 01 features..

000000D0 00 00 00 D7 00 00 00 E0 00 00 00 E8 00 00 00 01

000000E0 63 6F 72 70 73 65 73 00 01 00 00 00 F0 00 00 00 corpses.........

000000F0 F9 00 00 00 0A 01 00 00 00 61 72 6D 66 6C 61 6B armflak

00000100 5F 64 65 61 64 2E 74 64 66 00 E3 28 00 00 68 02 _dead.tdf..(..h.

00000110 00 00 01 6F 62 6A 65 63 74 73 33 64 00 02 00 00 ...objects3d....

00000120 00 25 01 00 00 37 01 00 00 43 01 00 00 00 4C 01 .%...7...C....L.

00000130 00 00 5D 01 00 00 00 61 72 6D 66 6C 61 6B 2E 33 ..]....armflak.3

00000140 64 6F 00 39 2A 00 00 7B 14 00 00 01 61 72 6D 66 do.9*..{....armf

00000150 6C 61 6B 5F 64 65 61 64 2E 33 64 6F 00 C9 34 00 lak_dead.3do..4.

00000160 00 1A 11 00 00 01 73 63 72 69 70 74 73 00 01 00 scripts...

00000170 00 00 76 01 00 00 7F 01 00 00 8B 01 00 00 00 41 ..v............A

00000180 52 4D 46 4C 41 4B 2E 43 4F 42 00 67 3F 00 00 E4 RMFLAK.COB.g?...

00000190 09 00 00 01 75 6E 69 74 70 69 63 73 00 01 00 00 unitpics....

000001A0 00 A5 01 00 00 AE 01 00 00 BA 01 00 00 00 41 52 AR

000001B0 4D 46 4C 41 4B 2E 50 43 58 00 B4 42 00 00 91 25 MFLAK.PCX..B...%

000001C0 00 00 01 75 6E 69 74 73 00 01 00 00 00 D1 01 00 ...units........

000001D0 00 DA 01 00 00 E6 01 00 00 00 41 52 4D 46 4C 41 ARMFLA

000001E0 4B 2E 46 42 49 00 89 63 00 00 39 05 00 00 01 77 K.FBI..c..9....w

000001F0 65 61 70 6F 6E 73 00 01 00 00 00 FF 01 00 00 08 eapons..........

00000200 02 00 00 1B 02 00 00 00 61 72 6D 66 6C 61 6B 5F armflak_

00000210 77 65 61 70 6F 6E 2E 74 64 66 00 2D 67 00 00 42 weapon.tdf.-g..B

00000220 02 00 00 01

Let's get started...

00000010 00 00 00 00 08 00 00 00 1C 00 00 00 64 00 00 00 d...

 ^^^^^^^^^^^ ^^^^^^^^^^^

At offset 0x14, you see the number 0x8. This is the number of entries in the directory. Grabbing the next 32-bit number at

offset 0x18, you get 0x1C. This is the offset of a list of directory entries. In this case, there are 8 entries in the list. The format of an entry is:

typedef struct _HPIEntry {

 long NameOffset; /* points to the file name */

 long DirDataOffset; /* points to directory data */

 char Flag; /* file flag */

} HPIEntry;

	NameOffset
	Pointer to the file name. This is a 0-terminated string of varying length.

	DirDataOffset
	Pointer to the directory data for the file. The actual data varies depending

on whether it's a file or a subdirectory

	Flag
	If this is 1, the entry is a subdirectory. If it's 0, it's a file.

Looking at offset 0x1C, we see:

00000010 64 00 00 00 d...

00000020 6A 00 00 00 01 97 00 00 00 A0 00 00 00 01 C6 00 j...............

00000030 00 00 CF 00 00 00 01 13 01 00 00 1D 01 00 00 01

00000040 66 01 00 00 6E 01 00 00 01 94 01 00 00 9D 01 00 f...n...........

00000050 00 01 C3 01 00 00 C9 01 00 00 01 EF 01 00 00 F7

00000060 01 00 00 01
The 8 entries are:

0x064, 0x06A, 1

0x097, 0x0A0, 1

0x0C6, 0x0CF, 1

0x113, 0x11D, 1

0x166, 0x16E, 1

0x194, 0x19D, 1

0x1C3, 0x1C9, 1

0x1EF, 0x1F7, 1

Let's look at the first entry. The Flag is 1, so it's a subdirectory. At offset 0x64, we see:

00000060 01 00 00 01 61 6E 69 6D 73 00 01 00 00 00 72 00 anims.....r.

 ^^^^^^^^^^^^^^^^^

or 'anims'. This is the name. Since this is a subdirectory, offset 0x6A contains the number of entries in the subdirectory,

followed by a pointer to the first entry. This is exactly like the count/pointer pair at 0x14 that got us started. Think recursion.

00000060 01 00 00 01 61 6E 69 6D 73 00 01 00 00 00 72 00 anims.....r.

 ^^^^^^^^^^^ ^^^^^

00000070 00 00 7B 00 00 00 8E 00 00 00 00 61 72 6D 66 6C ..{........armfl

 ^^^^^

The number at offset 0x6A is a 1, indicating that there's only 1 file in this subdirectory. 0x6E contains the offset of the first

(and only) entry in the subdirectory, which is:

0x7B, 0x8E, 0

The 0 indicates that this is a file. Looking at offset 0x7B, we see:

00000070 00 00 7B 00 00 00 8E 00 00 00 00 61 72 6D 66 6C ..{........armfl

 ^^^^^^^^^^^^^^

00000080 61 6B 5F 67 61 64 67 65 74 2E 67 61 66 00 24 02 ak_gadget.gaf.$.

 ^^^

or 'armflak_gadget.gaf'. This is the name of the first (and only) file in the 'anims' subdirectory. Since this is a file, the data at offset

0x8E is a little different.

There are 3 items here instead if one:

typedef struct _HPIFileData {

 long DataOffset; /* starting offset of the file */

 long FileSize; /* size of the decompressed file */

 char Flag; /* file flag */

} HPIEntry;

	DataOffset
	This is the offset in the HPI file that this file starts at.

	FileSize

	This is the decompressed file size. When you extract the file, it should be this many bytes long.

	Flag

	If this is 1, the file is compressed with LZ77 compression. If it's 2, it's compressed with ZLIb compression. If it's 0, it's not compressed at all. This is the format used by the unit viewer

.

00000080 61 6B 5F 67 61 64 67 65 74 2E 67 61 66 00 24 02 ak_gadget.gaf.$.

 ^^^^^

00000090 00 00 D8 2D 00 00 01 64 6F 77 6E 6C 6F 61 64 00 ...-...download.

 ^^^^^ ^^^^^^^^^^^ ^^

Looking at offset 0x8E, we see that the three items are:

0x224, 0x2DD8, 1

If you recall, the directory size was 0x224 bytes. This says the file starts at the first offset after the directory, which makes sense and means

we're interpreting things correctly. This also says that the extracted file should be 0x2DD8 (or 11,736) bytes long.

At this point, we know enough to actually traverse the directory tree in the HPI file. Here's a recursive pseudocode function to do it. The initial call

to it would be 'TraverseTree(".", Header.Start)'.

TraverseTree(string ParentName, int offset)

Entries = Directory[offset]

EntryOffset = Directory[offset+4]

for count = 1 to Entries

 NameOffset = Directory[EntryOffset]

 DataOffset = Directory[EntryOffset+4]

 Flag = Directory[EntryOffset+8]

 Name = ParentName+"\"+Directory[NameOffset]

 print "Processing ",Name

 if Flag = 1

 TraverseTree(Name, DataOffset) <- recursion!

 else

 ProcessFile(Name, DataOffset)

 End If

 EntryOffset = EntryOffset + 9

Next Count

If you code this up in your language of choice and run it, it should print something like this: (if you haven't guessed already,

the file I'm using as an example is the "Arm Flakker" unit's aflakker.ufo file)

.\anims

.\anims\armflak_gadget.gaf

.\download

.\download\ARMFLAK.TDF

.\features

.\features\corpses

.\features\corpses\armflak_dead.tdf

.\objects3d

.\objects3d\armflak.3do

.\objects3d\armflak_dead.3do

.\scripts

.\scripts\ARMFLAK.COB

.\unitpics

.\unitpics\ARMFLAK.PCX

.\units

.\units\ARMFLAK.FBI

.\weapons

.\weapons\armflak_weapon.tdf

At this point, I urge you to go look at that directory hex dump and traverse the thing by hand until it makes sense.

I can hear you now. "What the heck is that 'ProcessFile' function?" It decodes the file. I'll explain in a bit.

But first, here's a list of the various files in this HPI file, and their starting offsets.

If you don't understand where I got the starting offsets, go reread the directory hex dump until you do.

anims\armflak_gadget.gaf 0x0224

download\ARMFLAK.TDF 0x2861

features\corpses\armflak_dead.tdf 0x28E3

objects3d\armflak.3do 0x2A39

objects3d\armflak_dead.3do 0x34C9

scripts\ARMFLAK.COB 0x3F67

unitpics\ARMFLAK.PCX 0x42B4

units\ARMFLAK.FBI 0x6389

weapons\armflak_weapon.tdf 0x672D

Because it's a short file, and because it decodes to readable text, I'm going to use the ARMFLAK.TDF file as the example.

If the file was not compressed at all, then the file is just inserted into the HPI file as one big chunk.

But if it is...

This is where the -REAL- fun begins. I'm going to take it slow here because I'm still half figuring it out myself (writing this

has actually made me realize some things that I hadn't before).

When the file was compressed, it was broken up into chunks of 64K (65536) bytes each, plus one more chunk to hold anything left over. Each chunk

was then compressed. Note that some chunks are larger when compressed than decompressed, which means that some compressed chunks can be larger

than 64K.

The total number of chunks in the file can be obtained by the following formula:

chunks = Entry.FileSize / 65536

if (Entry.FileSize mod 65536) <> 0

 chunks = chunks + 1

The offset in the directory points to a list of 32-bit numbers that are the compressed sizes of each compressed chunk of data.

Following the list of sizes are the actual compressed chunks of data.

In this HPI file, each file has only one chunk, but the totala1.hpi file contains some files with a dozen or so, and the hpi files on the CDs have

files in them with over a hundred.

Going to offset 0x2861, we read in a chunk o'data and decrypt it to find this:

00002860 7E 00 00 00 53 51 53 48 02 01 01 6B 00 00 00 .~...SQSH...k...

00002870 01 01 00 00 FE 36 00 00 20 5B 51 49 4E 55 3C 0E 6.. [QINU<.

00002880 64 64 94 5D 49 5D 11 14 29 7B D5 26 18 55 6E 75 dd.]I]..){.&.Unu

00002890 64 54 34 41 79 6C 9C 71 81 83 8B 3B 59 49 CB 4D dT4Ayl.q...;YI.M

000028A0 43 D1 42 54 9A A5 A8 AA AF B0 B8 64 61 AC 6D B0 C.BT.......da.m.

000028B0 B1 82 72 34 79 B8 B0 BD DD A3 82 81 E8 86 AC 89 ..r4y...........

000028C0 98 92 C2 CF 98 EB 9D E0 56 BF A2 6F AB 5F A8 96 V..o._..

000028D0 B5 C3 9F B8 EB B9 BE 7D 4F C7 5F CE 2F D1 4C D1 }O._./.L.

000028E0 D0 D2 90

The decompressed file size of ARMFLAK.TDF is 257 bytes. This tells us that there's only one chunk. The size of this chunk is 0x7E bytes. The chunk itself immediately follows.

Each chunk looks like this:

typedef struct _HPIChunk {

 long Marker; /* always 0x48535153 (SQSH) */

 char Unknown1;

 char CompMethod; /* 1=LZ77, 2=ZLib */

 char Encrypt; /* is the block encrypted? */

 long CompressedSize; /* the length of the compressed data */

 long DecompressedSize; /* the length of the decompressed data */

 long Checksum; /* Checksum */

 char data[]; /* 'CompressedSize' bytes of data */

} HPIChunk;

	Marker
	This is the start-of-chunk marker, and is always 0x48535153 (ASCII 'SQSH').

	Unknown1

	I know not what this is for. It's always 0x02.

Maybe some sort of version number?

	CompMethod

	This is the compression method. It's 1 for LZ77, 2 for ZLib.

	Encrypt

	This tells whether the block is encrypted a second time. See below.

	CompressedSize

	This is the size of the compressed data in the chunk. 0x6B bytes.

	DecompressedSize
	This is the size of the decompressed data in the chunk. 0x101 bytes.

	Checksum
	This is a checksum of the data. It's merely the sum of all the bytes of

data (treated as unsigned numbers) added together

	data
	The actual compressed data in the chunk. CompressedSize (0x6B) bytes of it.

Let's look at the data.

00002870 20 5B 51 49 4E 55 3C 0E 6.. [QINU<.

00002880 64 64 94 5D 49 5D 11 14 29 7B D5 26 18 55 6E 75 dd.]I]..){.&.Unu

00002890 64 54 34 41 79 6C 9C 71 81 83 8B 3B 59 49 CB 4D dT4Ayl.q...;YI.M

000028A0 43 D1 42 54 9A A5 A8 AA AF B0 B8 64 61 AC 6D B0 C.BT.......da.m.

000028B0 B1 82 72 34 79 B8 B0 BD DD A3 82 81 E8 86 AC 89 ..r4y...........

000028C0 98 92 C2 CF 98 EB 9D E0 56 BF A2 6F AB 5F A8 96 V..o._..

000028D0 B5 C3 9F B8 EB B9 BE 7D 4F C7 5F CE 2F D1 4C D1 }O._./.L.

000028E0 D0 D2 90

Doesn't look like much, does it. That's because (YOU GUESSED IT!) it's encrypted yet again! Note: the checksum is calculated BEFORE this

decryption.

The 'Encrypt' field in the HPIChunk header is set to 1 to indicate that this decryption needs to be done.

To decrypt, do this (more pseudocode):

for x = 0 to CompressedSize-1

 data[x] = (data[x] - x) XOR x

next x

This gives us:

00002870 20 5B 4D 45 4E 55 30 00 [MENU0.

00002880 54 52 80 59 31 5D 0D 0A 09 7B D1 00 10 55 4E 49 TR.Y1]...{...UNI

00002890 54 22 00 3D 41 52 60 4D 41 43 4B 3B 11 01 83 01 T".=AR`MACK;....

000028A0 33 81 32 02 42 55 54 54 4F 4E B4 02 19 42 01 4E 3.2.BUTTON...B.N

000028B0 41 70 02 C2 01 46 4C 41 DD 23 02 7D E0 04 20 05 Ap...FLA.#.}.. .

000028C0 18 00 32 CF 00 D3 01 DE 56 3F 02 4F 03 5F 04 68 ..2.....V?.O._.h

000028D0 05 33 1F 06 D3 01 3E 41 8F 07 9F 08 AF 09 80 0D .3....>A........

000028E0 00 00 4C ..L

Woohoo! Look! Readable word fragments! But remember, the chunk is still compressed.

In this case, the block is compressed with LZ77, since CompMethod is 1.

The compression algorithm is a very basic sliding window compression scheme from the LZ77 family using a 4095 byte history and matches from 2 to 17

bytes long.

The first byte is kind of a "tag" byte which determines if the next eight pieces of data are literal bytes or history matches. Starting with the

least-significant bit, this tag byte is scanned to figure out what to do.

When the current bit is a zero, the next byte of the input is transferred directly to the output and added to end of the history buffer.

When the current bit is a one, the next two bytes taken from the input are used as a offset/length pair. The upper 12 bits are the offset into the

history buffer and the lower 4 bits are the length. If the offset is zero, the end of the input data has been reached and the decompressor

simply exits.

Since we can assume that there will be no matches with a length of zero or only one byte, any match is a mimimum of two bytes so we just add two

to the length which extends our range from 0-15 to 2-17 bytes.

The match is then copied from the history buffer to the output and also added onto the end of the history buffer to keep it in sync with the output.

When all eight bits of the tag byte have been used, the mask is reset and the next tag byte is loaded.

Here is some decompress code:

int Decompress(char *out, char *in, int len)

{

/*

 Decompress buffer "in" of size "len" into buffer "out" (previously allocated) returns the number of decompressed bytes.

*/

 int x;

 int outbufptr;

 int mask;

 int tag;

 int inptr;

 int outptr;

 int count;

 int done;

 char Window[4096];

 int inbufptr;

 for (x = 0; x < len; x++) {

 in[x] = (in[x] - x) ^ x;

 }

 done = FALSE;

 inptr = 0;

 outptr = 0;

 outbufptr = 1;

 mask = 1;

 tag = in[inptr++];

 while (!done) {

 if ((mask & tag) == 0) {

 out[outptr++] = in[inptr];

 Window[outbufptr] = in[inptr];

 outbufptr = (outbufptr + 1) & 0xFFF;

 inptr++;

 }

 else {

 count = *((unsigned short *) (in+inptr));

 inptr += 2;

 inbufptr = count >> 4;

 if (inbufptr == 0)

 return outptr;

 else {

 count = (count & 0x0f) + 2;

 if (count >= 0) {

 for (x = 0; x < count; x++) {

 out[outptr++] = Window[inbufptr];

 Window[outbufptr] = Window[inbufptr];

 inbufptr = (inbufptr + 1) & 0xFFF;

 outbufptr = (outbufptr + 1) & 0xFFF;

 }

 }

 }

 }

 mask *= 2;

 if (mask & 0x0100) {

 mask = 1;

 tag = in[inptr++];

 }

 }

 return outptr;

}
When fed the data, the routine spits out:

00000000 5B 4D 45 4E 55 45 4E 54 52 59 31 5D 0D 0A 09 7B [MENUENTRY1]...{

00000010 0D 0A 09 55 4E 49 54 4D 45 4E 55 3D 41 52 4D 41 ...UNITMENU=ARMA

00000020 43 4B 3B 0D 0A 09 4D 45 4E 55 3D 33 3B 0D 0A 09 CK;...MENU=3;...

00000030 42 55 54 54 4F 4E 3D 33 3B 0D 0A 09 55 4E 49 54 BUTTON=3;...UNIT

00000040 4E 41 4D 45 3D 41 52 4D 46 4C 41 4B 3B 0D 0A 09 NAME=ARMFLAK;...

00000050 7D 0D 0A 0D 0A 5B 4D 45 4E 55 45 4E 54 52 59 32 }....[MENUENTRY2

00000060 5D 0D 0A 09 7B 0D 0A 09 55 4E 49 54 4D 45 4E 55]...{...UNITMENU

00000070 3D 41 52 4D 41 43 56 3B 0D 0A 09 4D 45 4E 55 3D =ARMACV;...MENU=

00000080 33 3B 0D 0A 09 42 55 54 54 4F 4E 3D 33 3B 0D 0A 3;...BUTTON=3;..

00000090 09 55 4E 49 54 4E 41 4D 45 3D 41 52 4D 46 4C 41 .UNITNAME=ARMFLA

000000A0 4B 3B 0D 0A 09 7D 0D 0A 0D 0A 5B 4D 45 4E 55 45 K;...}....[MENUE

000000B0 4E 54 52 59 33 5D 0D 0A 09 7B 0D 0A 09 55 4E 49 NTRY3]...{...UNI

000000C0 54 4D 45 4E 55 3D 41 52 4D 41 43 41 3B 0D 0A 09 TMENU=ARMACA;...

000000D0 4D 45 4E 55 3D 33 3B 0D 0A 09 42 55 54 54 4F 4E MENU=3;...BUTTON

000000E0 3D 33 3B 0D 0A 09 55 4E 49 54 4E 41 4D 45 3D 41 =3;...UNITNAME=A

000000F0 52 4D 46 4C 41 4B 3B 0D 0A 09 7D 0D 0A 0D 0A 0D RMFLAK;...}.....

00000100 0A .

Yay! Clear decoded text. Write this chunk out, and go get the next one. When there are no more chunks, close the file, and go process the next one.

To recompress, do something like the following:

 WHILE look ahead buffer is not empty

 find a match in the window to previously output data

 IF match length > minimum match length

 output reference pair

 move the window match length to the right

 ELSE

 output window first data item

 move the window one to the right

 ENDIF

 END

If CompMethod is 2, use ZLib compression to decompress the block. You can get the zlib source code from the zlib home page at http://www.cdrom.com/pub/infozip/zlib/

FBI Commands

[image: image8.png]

By MartiD@worldnet.att.net
In the FBI tables, “0” means “off”, “1” means “on” and a “?” denotes an unknown use or entry.

Editable Categories

	Unit Name
	the name of the unit

	Version
	?

	Side
	the side it is on

	Objectname
	I think is the internal name for the unit

	Designation Name
	the name you see when you put the mouse over the unit

	Description
	the description of the unit

	Footprint X
	the footprint going ne way

	Footprint Z
	the foot print going the over way

	BuildCostEnergy
	how much energy it takes to build it

	BuildCostMetal
	how much metal you need to build it

	MaxDamage
	how much damage the unit can take

	MaxWaterDepth
	how deep it can go in water

	MaxSlope
	how much of a slope it can be built on and go over?

	EnergyUse
	how much energy it needs to do things

	BuildTime
	how long it takes to build it

	WorkerTime
	how fast it will build some thing

	Bmcode
	? You probably don't want to mess with this

	Builder
	I think if it can build things or not

	ThreeD
	if its a 3D unit

	ZBuffer
	some thing to do with the graphics you probably don't want to mess with this

	NoAutoFire
	If the unit has no auto fire

	SightDistance
	how far it can see

	RadarDistance
	how far they radar will go

	SoundCategory
	?

	EnergyStorage
	how much energy that unit can hold leave it blank for the commander

	MetalStorage
	same as above but for metal

	ExplodeAs
	how big the explosion is when your unit dies

	SelfDestructAs
	how big the explosion is when you make the unit self distruct

	Category
	what type of unit it is ?

	TEDClass
	you probably don't want to mess with it

	CopyRight
	the annoying Cavedog copy right

	YardMap
	?

	Corpse
	what the wreckage looks like

	GermanName
	what the name of the unit is in German

	GermanDescription
	the description in German

	UnitNumber
	the number of the unit

	FrenchName
	the name of the unit in French

	FrenchDescription
	the description in French

	firestandorders
	?

	StandingFireOrder
	?

	mobilestandorders
	?

	StandingMoveOrders
	?

	canmove
	the unit can move

	canpatrol
	the unit can patrol

	canstop
	the unit can stop what ever its doing

	canguard
	the unit can guard another unit

	MaxVelocity
	?

	BrakeRate
	how fast the unit can stop

	Acceleration
	how fast the unit can speed up

	TurnRate
	how fast the unit can turn

	SteeringMode
	how it steers

	ShootMe
	 ?

	CanFly
	the unit can fly if you put a 1

	crusisealt
	?

	Scale
	?

	BankScale
	?

	Builddistance
	how far the unit can be away from the unit to start building

	CanReclamate
	can reclaim?

	EnergyMake
	how much energy the unit makes

	MetalMake
	how much metal the unit makes

	DefaultMissionType
	?

	manuverleashlength
	how for the unit can go when you put the orders to maneuver

	MovementClass
	how it moves like a Kbot?

	Upright
	if the unit stands up or not

	standingmoveorders
	?

	buildangle
	what angle it can build at or what angle it can be built at

	Weapon1
	the primary weapon

	wpri_badTargetCategory
	what kind of unit the primary weapon is not go at killing

	BadTargetCategory
	the kind of units that the unit is not go at killing

	antiweapons
	?

	DamageModifier
	if the unit will repair its self

	canattack
	the unit can attack another unit

	ActivateWhenBuilt
	the unit is activated after is built

	onoffable
	the unit can be turned off and on

	RadarDistanceJam
	the area the unit will jam

	sortbias
	?

	IsAirBase
	?

	MinWaterDepth
	the depth that the water has to be to go there

	WaterLine
	?

	NoShadow
	the unit wont have a shadow

	TransMaxUnits
	the max amount of units that it can carry

	canload
	the unit can load other units

	transportsize
	?

	Weapon2
	the second weapon

	wsec_badTargetCategory
	the group that the second weapon has trouble killing

	Floater
	if the unit floats?

	NoChaseCategory
	the type of unit that it wont chase

	HoverAttack
	if the unit will hover while attacking

	Weapon3
	the third weapon

	SonarDistance
	the distance of the units sonar

	candgun
	they unit can dgun

	CloakCost
	the cost of cloaking the unit

	CloakCostMoving
	the cost of cloaking that unit while its moving

	HealTime
	how long it takes to heal that unit

	CanCapture
	if they unit can capture or not

	HideDamage
	if the other players can see if that unit is about to die

	ImmuneToParalyzer
	immune to paralyzer

	norestict
	?

	IsFeature
	?

	PigLatinName
	the name in Pig Latin

	SpanishName
	the Spanish name

	ItalianName
	the name in Itlian

	JapaneseName
	the name in Japanese

	PigLatinDescription
	the description in PigLatin

	MoveRate1
	?

	teleporter
	if the unit can teleport

	Stealth
	if the unit is stealth

	MakesMetal
	if the unit makes metal

	ExtractsMetal
	if the unit extracts metal

	altfromsealevel
	?

	attackrunlength
	

	Waterline
	?

	TidalGenerator
	if it is a tidal generator

	transportmaxunits
	the max amount of units that it can transport

	kamikaze
	if it's a kamikaze

	WindGenerator
	if it's a wind generator

	MobileStandOrders
	?

	BuildAngle
	the angle that it can build at or the angle it can be built at

	PitchScale
	?

	MoveRate2
	?

ARM Abbreviations

	ARMAAP
	Advanced Aircraft Plant

	ARMACA
	Advanced Construction Aircraft

	ARMACK
	Advanced Construction Kbot

	ARMACV
	Advanced Construction Vehicle

	ARMALAB
	Advanced Kbot Lab

	ARMAMD
	Fortitude Anti-nuke

	ARMANNI
	Annihilator

	ARMAP
	Aircraft plant

	ARMARAD
	Advanced Radar Tower

	ARMASER
	Eraser

	ARMASP
	Air Repair Pad

	ARMASY
	Advanced Ship Yard

	ARMATLAS
	Atlas

	ARMAVP
	Advanced Vehicle Plant

	ARMBATS
	Millenium

	ARMBRAWL
	Brawler

	ARMBRTHA
	Big Bertha

	ARMBULL
	Bulldog

	ARMCA
	Construction Aircraft

	ARMCARRY
	Colossus

	ARMCK
	Construction Kbot

	ARMCROC
	Triton

	ARMCRUS
	Conqueror

	ARMCS
	Construction Ship

	ARMCV
	Construction Vehicle

	ARMDRAG
	Dragons Teeth

	ARMESTOR
	Energy Storage

	ARMFAST
	Zipper

	ARMFAV
	Jeffy

	ARMFIDO
	Fido

	ARMFIG
	Freedom Fighter

	ARMFLASH
	Flash

	ARMFUS
	Fusion Plant

	ARMGEO
	Geothermal Plant

	ARMGUARD
	Guardian

	ARMHAM
	Hammer

	ARMHAWK
	Hawk

	ARMHLT
	Sentinel

	ARMJAM
	Jammer

	ARMJETH
	Jethro

	ARMLAB
	Kbot Lab

	ARMLANCE
	Lancet

	ARMLLT
	Light Laser Tower

	ARMMAKR
	Metal Maker

	ARMMART
	Luger

	ARMMERL
	Merl

	ARMMEX
	Metal Extractor

	ARMMOHO
	Moho Mine

	ARMMSHIP
	Ranger

	ARMMSTOR
	Metal Storage

	ARMPEEP
	Peeper

	ARMPNIX
	Phoenix

	ARMPT
	Skeeter

	ARMPW
	Peewee

	ARMRAD
	Radar Tower

	ARMRL
	Defender

	ARMROCK
	Rocko

	ARMROY
	Crusader

	ARMSAM
	Samson

	ARMSEER
	Seer

	ARMSILO
	Retaliator

	ARMSOLAR
	Solar Collector

	ARMSONAR
	Sonar Station

	ARMSPID
	Spider

	ARMSTUMP
	Stumpy

	ARMSUB
	Lurker

	ARMSUBK
	Piranha

	ARMSY
	Ship Yard

	ARMTHUND
	Thunder

	ARMTIDE
	Tidal Generator

	ARMTL
	Torpedo Launcher

	ARMTSHIP
	Hulk

	ARMVADER
	Invader

	ARMVP
	Vehicle Plant

	ARMWIN
	Wind Generator

	ARMZEUS
	Zeus

	ARMCOM
	Commander

	ARMGATE
	Galactic Gate

CORE Abbreviations

	CORAAP
	Advanced Aircraft Plant

	CORACA
	Advanced Construction Aircraft

	CORACK
	Advanced Construction Kbot

	CORACV
	Advanced Construction Vehicle

	CORAK
	A.K.

	CORALAB
	Advanced Kbot Lab

	CORAP
	Aircraft Plant

	CORAPE
	Rapier

	CORARAD
	Advanced Radar Tower

	CORASP
	Air Repair Pad

	CORASY
	Advanced Ship Yard

	CORAVP
	Advanced Vehicle Plant

	CORBATS
	Warlord

	CORCA
	Construction Aircraft

	CORCAN
	The Can

	CORCARRY
	Hive

	CORCK
	Construction Kbot

	CORCRASH
	Crasher

	CORCRUS
	Executioner

	CORCS
	Construction Ship

	CORCV
	Construction Vehicle

	CORDOOM
	Doomsday Machine

	CORDRAG
	Dragons Teeth

	CORESTOR
	Energy Storage

	CORETER
	Deleter

	CORFAV
	Weasel

	CORFINK
	Fink

	CORFMD
	Fortitude Anti-nuke

	CORFUS
	Fusion Plant

	CORGATOR
	Instigator

	CORGEO
	Geothermal Plant

	CORGOL
	Goliath

	CORHLT
	Gaat Gun

	CORHURC
	Hurricane

	CORINT
	Intimidator

	CORLAB
	Kbot Lab

	CORLLT
	Light Laser Tower

	CORMAKR
	Metal Maker

	CORMART
	Pillager

	CORMEX
	Metal Extractor

	CORMIST
	Slasher

	CORMOHO
	Moho Mine

	CORMSHIP
	Hydra

	CORMSTOR
	Metal Storage

	CORPT
	Searcher

	CORPUN
	Punisher

	CORPYRO
	Pyro

	CORRAD
	Radar Tower

	CORRAID
	Raider

	CORREAP
	Reaper

	CORRL
	Pulverizer

	CORROACH
	Roach

	CORROY
	Enforcer

	CORSEAL
	Crock

	CORSHAD
	Shadow

	CORSHARK
	Shark

	CORSILO
	Silencer

	CORSOLAR
	Solar Collector

	CORSONAR
	Sonar Station

	CORSPEC
	Spectre

	CORSTORM
	Storm

	CORSUB
	Snake

	CORSY
	Ship Yard

	CORTHUD
	Thud

	CORTIDE
	Tidal Generator

	CORTITAN
	Titan

	CORTL
	Torpedo Launcher

	CORTSHIP
	Envoy

	CORVALK
	Valkyrie

	CORVAMP
	Vamp

	CORVENG
	Avenger

	CORVP
	Vehicle Plant

	CORVRAD
	Informer

	CORVROC
	Diplomat

	CORWIN
	Wind Generator

	CORCOM
	Commander

	CORGATE
	Galactic Gate

	CORBUILD
	Hydration Plant

	CORTRUCK
	Truck

BOS Functions

[image: image9.png]

	Distances are in meters and Angles are in degrees

	
	

	Cache [Object];
	Disable texture animation (default = disabled)

	
	

	
	

	Call-Script [Script]([Parameters]);
	 Call a script

	
	

	
	

	Dont-Cache [Object];
	 Enable texture animation (default = disabled)

	
	

	
	

	Dont-Shade [Object];
	 Disable shading (default for building = enabled; default for moving units = disabled)

	
	

	
	

	Emit-Sfx [Type] from [Object];
	 Emit a SFX (fire or bubbles) from a point (pointbased) or from a vertex (vectorbased)

	
	

	
	

	Explode [Object] [Type];
	 Explode an object

	
	

	
	

	Get [SysVar];
	 Get a sysvar like BUILD_PERCENT_LEFT

	
	

	
	

	Hide [Object];
	 Hide an object (default = all objects shown)

	
	

	
	

	Move [Object] to [Axis] [Position] Speed [Speed];
	 Move an object along a selected axis (?-axis) with selected speed

	
	

	
	

	Move [Object] to [Axis] [Position] Now;
	 Move an object immediatly

	
	

	
	

	Return [Value];
	 Return to selected value

	
	

	
	

	Set [SysVar] To [Value];
	 Set a sysvar to a value (ex : SET ARMORED TO TRUE)

	
	

	
	

	Set-Signal-Mask [Signal];
	 Set an ID (0 , 2 , 4 , 8 , etc..) for the signal mask. this is how the script can be killed.

	
	

	
	

	Shade [Object];
	 Enable shading (default for building = enabled; default for moving units = disabled)

	
	

	
	

	Show [Object];
	 Show an object (default = all objects shown)

	
	

	
	

	Signal [Signal];
	 Emit a signal (0 , 2 , 4 , 8 , etc..) to kill script with same signal-mask

	
	

	
	

	Sleep [Time];
	 make a little pause between 2 or more events

	
	

	
	

	Spin [Object] Around [Axis] Speed [Speed] Accelerate [Acceleration];
	 start spinning a object

	
	

	
	

	Spin [Object] Around [Axis] Speed [Speed];
	 spin an object directly to max speed

	
	

	
	

	Start-Script [Script]([Parameters]);
	 Start a script

	
	

	
	

	Stop-Spin [Object] Around [Axis] Decelerate [Deceleration];
	 stop spinning an object with deceleration

	
	

	
	

	Stop-Spin [Object] Around [Axis];
	 stop spinning an object immediatly

	
	

	
	

	Turn [Object] to [Axis] [Bearing] Speed [Speed];
	 turn an object

	
	

	
	

	Turn [Object] to [Axis] [Bearing] Now;
	 turn an object immediatly

	
	

	
	

	Wait-For-Move [Object] Along [Axis];
	 Wait until selected object has finished moving along selected axis

	
	

	
	

	Wait-For-Turn [Object] Around [Axis];
	 Wait until selected object has finished turning around selected axis

	
	

Still not tried :

	Attach-Unit [Unit] To [Object];
	 Attach a Unit to selected object

	
	

	Drop-Unit [Unit];
	 Drop unit

	
	

	Jump [Destination];
	Jump if ([Value] == False) [Destination];

	
	

	Rand([Min], [Max]);
	

	
	 Randomize a static-var value . still not supported by the cobble

	
	

BOS Script Tutorial – TA

[image: image10.png]

(written by Alakhbar)

Firstly let me break down the BOS file into its componets here. For all you C programmers, this is very much like C but in its basic form. This is a general format for the BOS file.

	piece
	This lists most of the functions I have looked up in the BOS files in totala.hpi. Mainly I will be

using the arm battleship.bos file for examples but I will try and cover the ones here as best as I can.

I will also try to cover 2 topics here. The building functions and the transport functions.

Anyways lets get started with the first one, "piece". This one tells TA which objects will be

affected by the script. Such as "base" for the sweetspot() or "wake" for the bubble animations for

ships and of course "beam" for the nano sprays. A general rule of thumb is any object that is used to

aim with, emits a special effect (like smoke, bubbles, vtol flame, or nano spray), or creates that flash effect from cannon barrels gets put in here. The format for this is:

piece base, flare, wake1, wake2, turret;

Dont forget the colon. Its a C thing that symbolized end of statement. As you can see the names after "piece" are objects from the 3do file.

	static-var
	

	#define
	

	#include
	

	Create()
	

	StartMoving()
	

	StopMoving()
	

	AimPrimary(heading,pitch)
	

	AimSecondary(heading,pitch)
	

	AimTetriary(heading,pitch)
	

	AimFromPrimary(piecenum)
	

	AimFromSecondary(piecenum)
	

	AimFromTetriary(piecenum)
	

	QueryPrimary(piecenum)
	

	QuerySecondary(piecenum)
	

	QueryTetriary(piecenum)
	

	QueryNanoPiece(piecenum)
	

	Activate()
	

	Deactivate()
	

	StartBuilding()
	

	StopBuilding()
	

	QueryBuildInfo(piecenum)
	

	Demo()
	

	QueryTransport(piecenum)
	

	BeginTransport(height)
	

	EndTransport()
	

	SweetSpot(piecenum)
	

	Killed()

static-var

This item is where you would put variables that change in the bos file. Say you wanted to alter fire between 3 barrels on a turret like how the battleship does, you would put that variable name here. That way it gets initialized and tells TA that this variable is going to store variables. Let me run through an example of the armbats.bos file for its primary turret.

	static_var next_barrel1;

.....

FirePrimary()

{

if (next_barrel1==1)

{

.....

}

if (next_barrel1==2)

{

}

if (next_barrel1==3)

{

.....

}

next_barrel1=next_barrel1+1;

if (next_barrel1==4)

{

nextbarrel1=1;

}

}
	A little note on the ";"

Notice how on most of the items here that they

dont have a ";" after them? Thats because these aren’t statements like the one on the bottom,
next_barrel1=next_barrel1+1;. The FirePrimary() is a function and the if (next_barrel1==1) is a comparison statement. They dont get a ";" at the end of them. Also notice the brackets "{" and "}". They also enclose statements. Each bracket that starts with a "{" must end with a "}" as in the example to the left.

This is another part of C language here. You would use these in its basic form like below:

FirePrimary()

{

show flare1a;

sleep 150;

hide flare1a;

}

where the brackets "{" and "}" enclose all the statements in the FirePrimary() function call. A more complex version is like the one to the left.

The "..." just means that there was additional information there that didn’t need to be typed up here.

As you can see by the "if" comparisons that its using the static-var "next_barrel1" to see if it should run the statement below it. It is also incremented at the bottom by the statement "next_barrel1=next_barrel1+1". Also I need to note here that the difference between the "=" and the "==" thing is another C expression that means this. "=" means that a variable

will have a variable of whatever you put after it and the "==" is used for comparisons like they are used in the "if" statements listed above. If you put "if (next_barrel1=1)" all it will do is say "see if next_barrel1 is equal to 1, but first set next_barrel1 to be equal to 1, now compair".

static-var only holds variables. Thats all this does. TA can distinguish which variable is assigned to which unit so dont worry about having 30 battleships in the game and it being confused as to which turret is being assigned a variable and stuff.

#define

This confusing little thing is what you would use to define signals and animation variables. Yea confusing isn’t it? Here’s an example, again of the armbats.bos file:

	...

#define SIG_AIM1
2

#define SIG_AIM2
4

#define
SIG_WAKE
8

#define SMOKEPIECE1 base

...

aim at
	This is going to be confusing so I will start with the first 3 items to the left. SIG is a signal which uses a value to separate them so they are independent, like how these 3 are.

What a signal does is stop a function from doing an action so that it can be restarted or stopped. The reason this is done is because say a battleship is aiming its turrets at a target, if the SIG isnt there then the turrets wont be able to re another target until the first target is dead. I believe this is what it does. I haven’t tested a unit without them so I am uncertain as to if this is true.

Also the numbers next to them are what make the signals independant to one another. So say if SIG_AIM1 and SIG_AIM2 were both 2, then when the signal was sent to SIG_AIM1 to stop aiming, SIG_AIM2 would also be halted, even if it wasnt finished aiming (again I think this is what happens on overlapping signal numbers).

"SMOKEPIECE1 base" means that the object name "base" is where the smoke will eminate

from when the unit is badly damaged. You can have more pieces smoke by telling it like say

you want the turret to smoke also. It would be "#define SMOKEPIECE1 base" then below that

"#define SMOKEPIECE2 turret1".

Another #define item is ANIM_VARIABLE TRUE. This tells TA that within the BOS file

there are statements dealing with how the item is deactived and activated. Like how the Brawler tucks in its wings when it lands or how the buildings open and close themselves up for building stuff. Again these are just signals that allow a process to stop and be restarted.

Notice also that the #defines dont use a ";" at the end of them.

#include

Basically this just includes other scripts that are to go along with the regular bos file. The cobbler has a hard time, I think, in using path names. My suggestion is to change them to just a simple file name and keep the bos file, all the .h files and the Cobbler in the same directory. The format for this is:

#include "SFXtype.h"

#include "smokeunit.h"

#include "exptype.h"

Thats all the #include does is include files when the Cobbler compiles the BOS script. Also notice that the file names are surrounded by a " and that there is no ; at the end of these either. They are called using the statement "start-script 'function name'();" like, for example, the function inside smokeunit.h would be "start-script SmokeUnit();".

Create()

This is a function and what it does is tell TA what to do when the unit is completed. Any variable names that were used in static-var get initialized in here and any animations like the radar on top of the carrier and aircraft plants get placed in here as well. Its also a good idea to put the "start-script Smokeunit();" call in here as well so its ready to go when the unit is damaged, even while it was being built.

	Create()

{

hide flare1a;

hide flare1b;

hide flare1c;

hide flare2a;

hide flare2b;

hide flare2c;

next_barrel1=1;

next_barrel2=1;

start

}

script SmokeUnit();
	As you can see the armbats.bos file here hides

all the flares that are shown when the cannons are fired and the next_barrel1=1; variables are initialized in here as well.

Every unit must have this, even if there isn’t anything done to the unit like the dragon teeth. It still needs this part.

	Create()

{

padflip = 0;

start

script SmokeUnit();

while(get BUILD_PERCENT_LEFT)

{

sleep 1000;

}

spin radar around y

axis speed <60>;

}

var
	Take a look here. This is the Create() function for the armcarry.bos file. Again the variable padflip is initialized the start script SmokeUnit(); is called and below that a "while" condition is called. This "while" condition prevents the next line, which spins the radar, from starting until the BUILD_PERCENT_LEFT is
completed. If you didnt have this, the radar would be spinning while the unit was being built.

The "padflip = 0;" statement is just a static

that is just being initialized.

--

StartMoving()

Generally, k-bots, ships, and subs use this function to either show the wakes from ships and subs, or tell TA that the k-bot is walking. I havent seen any use of these in vehicles or aircraft in their BOS files. Anyways for vessels a typical setup would be this:

--

	StartMoving()

{

signal SIG_WAKE;

set

mask SIG_WAKE;

while (TRUE)

{

emit

emit

sleep 300;

}

}
	See the "signal SIG_WAKE;" call?

This tells the unit that if its changing its direction to restart the script. The signal function "StopMoving()" will have the call to stop the wake bubble animation. "set signal

sfx SFXTYPE_WAKE1 from wake1; sfx SFXTYPE_WAKE1 from wake2; mask" is what allows itself to be killed by another "signal" call.

All this does is create the wake bubbles from a ship while its moving.

The statement "while (TRUE)" means that if the signal hasnt been killed off, to continue with the following statements below it that are enclosed in brackets "{ }". "emit-sxf SXFTYPE_WAKE1 from wake1;" is what makes the bubbles and "wake1" is the object name in the 3do file. The delay, "sleep 300" means to not repeat the above statements for 300 ticks (I think) so that the bubbles arnt overlapping themselves and stuff.

For the k-bots, the only thing I've found is a boolean expression to indicate if the unit is moving or not. Its used in another function called "MotionControl()" which houses all the information for aiming certain parts like the nanobeams and such. Anyways, what k-bots use is:

	static var bMoving;

.....

StartMoving()

{

bMoving = TRUE;

}
	Pretty straight forward here. Its just using the static var of Moving to show the "MotionControl()" function that the unit is moving. You could pass this to another function, say the "Deactivate()" function by giving it a condition like "if (bMoving)".

StopMoving()

This is just the opposite of "StartMoving()" and it is used the same way as the "StartMoving()" function call but what its used for is to send signals, like this:

	StopMoving()

{

signal SIG_WAKE;

}
	For ships and subs, all this is doing is killing off the animation bubbles that were started in the "StartMoving()" function.

You dont need the "set signal mask" statement in here because its already set by the "StartMoving()" function.

The k-bot script would use:

	StopMoving()

{

bMoving = FALSE;

}
	No signal call here, just the variable set to FALSE so the variable can be compaired in another function.

AimPrimary(heading,pitch)

AimSecondary(heading,pitch)

AimTetriary(heading,pitch)

Turret aiming galore! Yup thats what this function does is aim the turret and the barrels (if any) towards their target. Turret based weapons need this. If you are unsure about needing this, check the "weapons.tdf" file and look for the item "turret=1" for the weapon you want to use. If thats true then you definitely will need this.

Using the armbats.bos file for an example, the format is:

	AimPrimary(heading,pitch)

{

signal SIG_AIM1;

set signal

mask SIG_AIM1;

turn turret1 to y

signal

axis heading speed <55>;

turn turret1 to x

axis (0 pitch) speed <30>;

wait for

turn turret1 around y axis;

wait for

turn turret1 around x axis;

return(TRUE);

}
	Again like in the "StartMoving()"
function we have the signal calls here but for SIG_AIM1 instead. There isn’t another function that stops the SIG_AIM1, its done in here because the weapon is constantly being aimed and it can be reaimed at another target because it has the "set mask" statement in here.

I think the last statement, "return(TRUE);" is kinda like a condition where the unit wont stop aiming until it has the proper aim towards its target, then it goes on to the next phase... FIRING!!!

Anyways the line "turn turret1 to y-axis heading speed <55>;". "turn", of course, means turn or rotate around an axis. "turret1" is the object as named in the 3do file. "to y-axis" means around y-axis. Thats confusing. "heading" is the number that is passed from the function "AimPrimary(heading,pitch)", its the direction of the target to "turret1". Or in naval terms, bearing. "speed <55>" is the speed setting of the object that will rotate in this statement.

A little note on "passing". This is a C thing where in a function name (such as in "AimPrimary(heading,pitch)") a value or set of values can be sent from the main program, through this function and used in the statements inside of it. Since the main program of TA already initializes and uses the variables "heading" and "pitch", you dont need to define them in the static-var part of your bos file.

You will notice here that the next line "turn turret1 to x-axis (0-pitch) speed <30>;" is using the "turret1" object to elevate the barrels of the turret along the x-axis. This I dont like because all the barrels are being aimed at the same time but I guess in the game you cant tell the difference. Everything is the same here exept for the (0-pitch) number. It gets this number exactly like how it got the "heading" number, passed from the function name of "AimPrimary(heading,pitch)". The (0-pitch) sets the angle to where a projectile weapon will fire and since gravity is an issue in this game, it uses this format. I think this is how it will turn negative numbers into positive elevations. Again we have the speed setting by "speed <30>".

In the units .fbi file, AimPrimary is Weapon1, AimSeconday is Weapon2, and AimTetriary is Weapon3. I dont know what Weapon4 is though.

AimFromPrimary(piecenum)

AimFromSecondary(piecenum)

AimFromTetriary(piecenum)

All this function does is set which object is going to be used to aim with. The format for this is:

	AimFromPrimary(piecenum)

{

piecenum=turret1;

}

AimFromSecondary(piecenum)

{

piecenum=turret2;

}
	Again, turreted weapons need to have this so TA knows what object to use to get the "heading" and "pitch" angles from.

We have the "passed" variables here but they are going the other way, "piecenum" is being defined here and in the TA main program it will have that information from this function.

That’s all this function does.

QueryPrimary(piecenum)

QuerySecondary(piecenum)

QueryTetriary(piecenum)

Dont let the name fool you. These functions are what actually fires the weapon. TA asks "what object do I use to launch the weapon from?" and they are usually the objects named FLARE.

The format for this is:

	QueryPrimary(piecenum)

{

piecenum=flare1a;

}

QuerySecondary(piecenum)

{

piecenum=flare1b;

}
	Again like in the "AimFromPrimary()" function, its passing variables, or object names, to TA giving it the object names to use as firing positions for that particular weapon.

Heres a rotating firing sequence for a triple barrel turret as like the one on the Arms

Battleship:

	QueryPrimary(piecenum)

{

if (next_barrel1==1) {

piecenum=flare1a; }

if (next_barrel1==2) {

piecenum=flare1b; }

if (next_barrel1==3) {

piecenum=flare1c; }

}
	Back above in the "static var" section, the example shows the "next_barrel1" variable being incremented and down here its being compaired to see which flare should be used. It would look really odd to have the center barrel firing all the time while the
left and right barrels show their flares. Thats why this is done like this.

Thats all this function does.

FirePrimary(piecenum)

FireSecondary(piecenum)

FireTetriary(piecenum)

Yup another name mixup here. What this function does is show animation for firing. Turrets use this to move their barrels back and to show flares, like this:

	FirePrimary()

{

if (next_barrel1==1)

{

 move barrel1a to z axis;

 axis [2.4] speed [500];

 wait

 move barrel1a along z

 move barrel1a to z

axis [0] speed [3.0];

show flare1a;

sleep 150;

hide flare1a;

}

.....

}
	After the "if" comparison is done, a barrel is moved along the z axis to a position [2.4] AWAY from the center of its z axis at the speed of [500].

Watch the brackets and
where they are used. The bottom of this file has a list as to their occurrence. The "wait move" is for a pause that will wait for the specified object to actually move to its required length along a specified axis before proceeding to the next statement. The "along" is a good addition because it allows you to have multi axial movements (say a barrel that is raising out of a ground or whatever).

The next statement is the barrel returning to the ready position but moving slowly because of the speed setting of [3.0]. Also notice that z-axis is [0] and not [2.4]. That’s because its returning the object barrel1a to its original position. If you had said [2.4] instead of [0], the barrel would appear 2.4 units away from the center of its z-axis.

The "show flare1a;" does just that, it shows the flare1a object, sleeps for 150 ticks (I think its in ticks which I think is 1/100th of a second?), and then hides the flare1a object again. This gives it that flash effect.

Activate()

Deactivate()

These are the state requests of a particular unit. The Brawler, Missile ship, MERL, Construction Yards, etc... use them. What they do is make a unit useable or un-usable until it goes into the ready status. Like how you cant fire a Nuke until its done loading it on the pad or why the MERL wont fire until the rocket is in a position to fire.

An important note here is that the #include "Statechg.h" line needs to be added twice in the bos file. Once before the #define ACTIVATECMD / DEACTIVATECMD and once after it. Let me show you an example of the arm's missile silo bos file:

#define ANIM_VARIABLE TRUE

#include "StateChg.h"

#include "activatescr.bos"

#include "deactivatescr.bos"

#include "smokeunit.h"

#include "exptype.h"

 ("Go()" and "Stop()" functions here)

#define ACTIVATECMD call-script Go();

#define DEACTIVATECMD call-script Stop();

#include "StateChg.h" -

.....

Go()

{

dont cache door1;

dont cache door2;

dont cache missile;

dont cache plate;

dont cache arm;

show missile;

call script activatescr();

ready = TRUE;

}

Stop()

{

ready = FALSE;

 script activatescr();"

sleep 4000;

call script deactivatescr();

cache door1;

cache door2;

cache missile;

cache plate;

cache arm;

}

	See how "Statechg.h" was added twice Here? Remember, once before and once after the "#define ACTIVATECMD" and "#define DEACTIVATECMD" definitions. Also notice after the ACTIVATECMD there is the segment “call script Go();". This is the function used to show the animation of the unit being readied to shoot. The same with the DEACTIVATECMD but to deactivate the unit. Take note of the "#define ANIM_VARIABLE TRUE" definition here as well. It will be needed.

Here is where the functions "Go()" and "Stop()" are at. I am not sure what the "don’t cache" and "cache" do but by following this, a rule of thumb can be made. Use "dont cache" for objects that will be animated by the function "activatescr()" and "cache" for objects animated by the function "deactivatescr()".

You can see that "Go()" and "Stop()" are defined at the top by "#define ACTIVATECMD call script Go();" and #define DEACTIVATECMD call script Stop();". What this says is when TA gets the ACTIVATECMD from the user (you wanting the unit to do something) to start running the function "Go()". And within that "Go()"function is a "call statement. And below that the variable "ready" which can be used for comparison in another function.

	 // Activate.bos file //

activatescr()

{

 If (ANIM_VARIABLE)

 {

 move plate to y axis <0.00> now

 move arm to x axis <0.00> now

 move arm to z axis <0.00> now

 turn door1 around z axis <0> now

 turn door1 to z axis [89.55] speed <47.13>

 turn door2 around z axis <0> now

 turn door2 to z axis [90.00] speed <47.37>

 sleep <1900>

 }

 If (ANIM_VARIABLE)

 {

 move door1 to y axis [6.10] speed <3.13>

 move door2 to y axis [6.10] speed <3.13>

 sleep <1950>

 }

 If (ANIM_VARIABLE)

 {

 move plate to y axis [8.00] speed <4.06>

 sleep <1970>

 }

 If (ANIM_VARIABLE)

 {

 turn arm to x axis [90.00] speed <45.54>

 sleep <1976>

 }

 sleep <114>

 return (0)

}
	Here is the "activatescr()" function from the arm's missile silo. Being called by the "Go()" function, and included by #include "activatescr.bos" definition, here is where the pieces are maneuvered into place that will allow the unit to fire.

You can see the "if" comparisons to see if ANIM_VARIABLE exists, which it does, so these conditions will always be true. Delays by the statements "sleep<1900>" pause the sequences here.

To me it looks like a better way
of scripting this could have been done by using the "wait on move" command and removing the "if" comparisons, but I guess it has to be written like this.

At the very bottom is the
"return (0)" statement which is just returning to the "Go()" function saying its done with this and can continue on with the rest of its statements.

The "Deactivate()" function is just the opposite of this "Activate()"function because it just replaces all pieces back into their original position.

Now all these functions are just setting up how the unit is to be activated. The actual call is from here:

	 // Armsilo.bos //

AimPrimary(heading,pitch)

{

start script RequestState(ACTIVE);

signal SIG_AIM;

set signal

mask SIG_AIM;

while (!ready)

{

sleep(250);

}

start script RestoreAfterDelay();

return(TRUE);

}

 // Segment from file statechg.h //

..... -

if (statechg_DesiredState == ACTIVE)

{

ACTIVATECMD

actualstate = ACTIVE;

 }
	So why is the statement "start script RequestState(ACTIVE);" the one that does it? Because in the "statechg.h" file it has an "if" comparison checking to see which state was requested. Since "ACTIVE" was passed from the"RequestState(ACTIVE);" statement, the "if" comparison is true and the statement within the brackets are executed. "ACTIVATECMD" is called and since "ACTIVATECMD" was defined to call script "Go()", we go through that function now. Walking through the "Go()" function we move to another "call script" but this one goes to the "activatescr()" function where it starts moving parts. After that’s done it returns to "Go()"and then back to AimPrimary(heading,pitch)" where it then sets up the signal and goes on from there.

I know this was a big one but I had to over a very in depth example for using this function and how. If you are lost then load up the "armsilo.bos", "activate.bos", and the "statechg.h" files so you can walk through it

with this text. If you want to make units that follow this, you need to get this.

StartBuilding()

StopBuilding()

This function just animates the construction unit or plant, depending on what it is, and can be used to call the ACTIVATECMD or state of the unit. A particular format is followed by the unit type as listed below:

	StartBuilding()

{

spin pad around y axis speed <30>;

}

StopBuilding()

{

stop

spin pad around y axis;

}
	For plants that have a pad that spins around, they use this. Shipyards don’t have a pad that spins so they don’t use this at all.

	StartBuilding()

{

set INBUILDSTANCE to TRUE;

}

StopBuilding()

{

set INBUILDSTANCE to FALSE;

}
	Construction aircraft use this one. TA has INBUILDSTANCE already defined and all this is doing is setting that variable as true or false.

	StartBuilding(heading)

{

buildheading = heading;

start script RequestState(ACTIVE);

}

StopBuilding()

{

start script RequestState(INACTIVE);

}
	C bots, C ships and C vehicles use this format. Their states are requested so that the animation of their nanolathing pieces can be opened and the variable "heading" is used in another function called TargetHeading(heading)" so that the nanolathing piece can be properly aimed.

	StartBuilding(heading,pitch)

{

bAiming = TRUE;

while (NOT bCanAim)

{

sleep 100;

}

turn torso to y axis heading speed <300>;

 wait

turn luparm to x axis (0 pitch<30>) speed <45>;

wait for

turn torso around y axis;

for

turn luparm around x axis;

set INBUILDSTANCE to TRUE;

}

StopBuilding()

{

set INBUILDSTANCE to FALSE;

signal SIG_AIM;

set signal mask SIG_AIM

;

call script RestorePosition();

}
	This is the layout for what the commander uses for its building process. Its using "bAiming" for comparison in other functions as well as the INBUILDSTANCE variable. The

commander also uses signals because it also has regular weapons to fire with.

You would use this format if your unit had weapons and a building capacity.

--

TargetHeading(heading)

This is the second part for the "StartBuilding()" function that the mobile construction units (k-bots, ships, and vehicles) use. I believe this is what the nanolathing pieces use for their aiming.

	TargetHeading(heading)

{

buildheading = 0

heading;

}

QueryNanoPiece(piecenum)

This is exactly like the "QueryPrimary()" function call. It tells TA which object piece to use for the nanolathing spray.

	QueryNanoPiece(piecenum)

{

piecenum=beam;

}
	This is just a simple designation for a unit that has one nanolathing piece named "beam".

	QueryNanoPiece(piecenum)

{

if(spray == 0)

{

piecenum=beam1;

}

if(spray != 0)

{

piecenum=beam2;

}

spray = !spray;

}
	Here is a way to get 2 nanolathing pieces to fire at the same time. The example script is from the arms advanced vehicle plant. Apparently this is a way
to pass 2 pieces through the "piecenum" variable by using this series of "if" comparisons. If your building unit has 2 nanolathing pieces, this may be the way to go.

QueryBuildInfo(piecenum)

This function defines what object piece is used to attach the unit thats being built too. Only construction plants as well as the ship yards use this. Mobile construction units dont use this. The format is:

	QueryBuildInfo(piecenum)

{

piecenum=pad;

}
	Just defining what piece is used to locate the unit thats being
built. I believe it attaches the unit to this piece so when the pad is spinning, the unit will spin with it.

QueryTransport(piecenum)

Not sure exactly what this does but by a guess it might be the object that is used to carry the unit. Below is the fragment from the arm atlas bos file. I believe that the statement "piecenum=1;" refrences the first object in the list for the transport, the one named "base".

	QueryTransport(piecenum)

{

 piecenum=1;

}

BeginTransport(height)

This item sets the attachment point for the unit to be picked up by moving the object named "link" to the unit that will be picked up. The part (0-height) takes the height of the transport and turns it into a negative number and that is where "link" gets moved too. The "RequestState(ACTIVE);" handles the animation of the unit lowering because as like before in the "Activate()" function description above, it will refrence its own "Activatescr()" function which will have its own statements for lowering the unit to carry it and then raising it again to its original height.

	BeginTransport(height)

 {

 move link to y axis (0 height) now;

start script RequestState(ACTIVE);

}

EndTransport()

This is the ending part for the "BeginTransport(height)" function. It also contains the "RequestState(INACTIVE);" call and does the opposite of the above function.

	EndTransport()

{

start

script RequestState(INACTIVE);

}

SweetSpot(piecenum)

I believe this is the object that is used to reference where the user needs to click in order to select it. It might also refer to where the opposing units aim for while targeting.

	SweetSpot(piecenum)

{

piecenum=base;

}

Demo()

Part of CD's unit viewer call. Not all units have this but I think it allows a unit to be viewed in the unit viewer. The format for this is:

	Demo()

{

unitviewer = TRUE;

}
	Also in other parts in different bos files, I have found that within the "Activate()" functions, the statement "unitviewer = FALSE;" was included so its possible to just add that statement to the "Activate()" functions of all bos files.

Killed(severity, corpsetype)

This is how the unit is destroyed and what to do in a certain condition. Mainly the condition is how much damage the unit takes. Here is the arm aircraft plants "Killed()" function.

	Killed(severity, corpsetype)

{

if (severity <= 25)

{

corpsetype = 1;

explode base type BITMAPONLY | BITMAP1;

explode beam1 type BITMAPONLY | BITMAP2;

explode beam2 type BITMAPONLY | BITMAP3;

explode door1 type BITMAPONLY | BITMAP4;

explode door2 type BITMAPONLY | BITMAP5;

explode light type BITMAPONLY | BITMAP1;

explode nano1 type BITMAPONLY | BITMAP2;

explode nano2 type BITMAPONLY | BITMAP3;

explode pad type BITMAPONLY | BITMAP4;

explode plate1 type BITMAPONLY | BITMAP5;

explode plate2 type BITMAPONLY | BITMAP1;

explode post1 type BITMAPONLY | BITMAP2;

explode post2 type BITMAPONLY | BITMAP3;

explode radar type BITMAPONLY | BITMAP4;

return(0);

}

if (severity <= 50)

{

 corpsetype = 2;

explode base type BITMAPONLY | BITMAP1;

explode beam1 type FALL | BITMAP2;

explode beam2 type FALL | BITMAP3;

explode door1 type BITMAPONLY | BITMAP4;

explode door2 type BITMAPONLY | BITMAP5;

explode light type FALL | BITMAP1;

explode nano1 type SHATTER | BITMAP2;

explode nano2 type BITMAPONLY | BITMAP3;

explode pad type BITMAPONLY | BITMAP4;

explode plate1 type BITMAPONLY | BITMAP5;

explode plate2 type BITMAPONLY | BITMAP1;

explode post1 type FALL | BITMAP2;

explode post2 type FALL | BITMAP3;

explode radar type FALL | BITMAP4;

return(0);

}

if (severity <= 99)

{

corpsetype = 3;

explode base type BITMAPONLY | BITMAP1;

explode beam1 type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP2;

explode beam2 type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP3;

explode door1 type BITMAPONLY | BITMAP4;

explode door2 type BITMAPONLY | BITMAP5;

explode light type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP1;

explode nano1 type SHATTER | BITMAP2;

explode nano2 type BITMAPONLY | BITMAP3;

explode pad type BITMAPONLY | BITMAP4;

explode plate1 type BITMAPONLY | BITMAP5;

explode plate2 type BITMAPONLY | BITMAP1;

explode post1 type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP2;

explode post2 type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP3;

explode radar type FALL | SMOKE | FIRE | EXPLODE_ON_HIT | BITMAP4;

return(0);

}

}

GUI File Format

[image: image11.png]

by Dark Rain

This is a description of the GUI file format used by TA to store

menus layout information. It’s used in build menus, dialogs etc.

All the stuff in this file was found by trial and error and some

deduction, hours of fun ^_^.

--

Generic Infos about gui files :

--

Each gui files represent an interface on the screen, it can be

full screen or just a small part of it. We'll call a gui file as

as whole an Interface.

Each interface is divided into sub components called Gadgets,

these components can be anything from a button to a scroll bar.

Here's an example of a simple gui file :

[GADGET0]

{

[COMMON]

{

id=0;

assoc=205;

name=Mainmenu.GUI;

xpos=0;

ypos=0;

width=640;

height=480;

attribs=52685;

colorf=52685;

colorb=52685;

texturenumber=0;

fontnumber=-51;

active=1;

commonattribs=-51;

help=;

}

totalgadgets=6;

[VERSION]

{

major=-51;

minor=-51;

revision=-51;

}

panel=;

crdefault=;

escdefault=;

defaultfocus=SINGLE;

}

[GADGET1]

{

[COMMON]

{

id=1;

assoc=126;

name=SINGLE;

xpos=139;

ypos=393;

width=96;

height=20;

attribs=2;

colorf=0;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=54;

help=;

}

status=0;

text=SINGLE;

quickkey=83;

grayedout=0;

stages=0;

}

Each gadget is between the

[GADGET0]

{

[COMMON]

{

Gadget infos go here

}

}

You have to note that only the [] are necessary. We have to

suppose that GAGDET1, GAGDET2 etc are for the benefice of Cavedog

Menu Editor, so the following is valid :

[]

{

[COMMON]

{

Gadget infos go here

}

}

Each Gadget is divided in 2 parts, the common attributes and the

gadget specific attributes.

COMMON : The common attributes are attributes

that are well.. common to each gadgets ^_^. This mean that each

gadget has all these attributes BUT it doesn't mean that all are

effective. Some just dont apply to a type of gadget, like a button

doesnt react to any change in size and witdth etc.

SPECIFIC : These are attributes that are needed for some type

of gadgets, for example, some gadgets need a Text description or

they need to be grayed out or not etc.

Another important thing, is the first gadget. This gadget

represent the interface itself. It defines the interface position

on the screen, it'S size, position, background graphic etc. All

the following gadgets are for element of the interface in question.

--

--

COMMON Tag descriptions :

--

id :

--

The ID, is the most important attribute of a gadget, it defines

what the gadget is. Is it a button, text field, scrollbar etc?

This ID decides it.

Here are the various values the ID tag can take and their effects :

0 -> The ID 0 is always used in cavedog gui files to represent the

 first gadget that defines the interface. However, this is like

 Gadget#, it'S optional and probably only for their interface tool.

 In truth, you can give to the ID of the first Gadget in the file

 any value. Personaly, I would leave it to 0, it could have

 unpredictable results.

1 -> It makes the gadget a button

2 -> Creates a listbox.

3 -> Creates a textfield, it's doesnt have any borders, so you have

 to create them yourself in the background image of the form for

 example.

4 -> Creates a Vertical/horizontal Scroll bar.

5 -> It seems to makes the gadget the equivalent of a label for those

 familiar with VB. It allows you to place only text where you want

 to.

6 -> This creates a blank surface that will receive a picture at run time.

 It's used to display a small picture of the map when you're selecting

 a map, or to show a screenshot of your saved game.

7-> It is used to set the default font for labels

12 -> Used to display a picture box, really handy.

Most of these gadget types need other optional fields or have

extra possibilites, we'll discuss it later in this text.

--

--

Name :

--

The name is used for two things, the first one is the graphic

used for the gadget and as a target for "events" that are hard coded.

GRAPHIC :

The name you choose for it, is used to look directly in a gaf

file that has the same name as your menu file. For example,

MAINMENU.GUI has a corresponding file named MAINMENU.GAF. As you may

or may not know, Gaf file are made of several image sequences that

are packed inside of it and each sequence has a name. It will try to

match that name with one inside the gaf file. Failling to do that,

it will resort to using the default graphics for it's ID and for it's

size. This is why the buttons in MAINMENU.gui, which represent the

main menu that appear when you open TA, use a button graphic

even thought there's no corresponding sequence in the gaf file.

You have to understand that a menu, any menu, be it a unit menu or

the battle room menu, has access only to the graphic sequence stored

in the gaf file with it's name and the sequences in commongui.gaf.

This is because all the sequences in commongui.gaf are treated like

global variable.

For changing those graphic individualy you can either change the

default graphic in commongui.gaf but this will change the

button for ALL the buttons using the default graphics. This is a

bit clunky. The right way to do this, would be to create a sequence

inside MAINMENU.gaf called INTRO (for the Intro gadget). Create it

with two frame for pressed and unpressed and voila.

This open a lot of doors, this would allow TC to assign a different

graphic to each button, sure as hell makes for more variety than

the same damn default button everywhere ^_^.

Note : I thought of adding all the units Build Pictures to

 commongui.gaf. It would save a LOT of space for

 gui based menus and MDF would be able to be done

 with little or no additional space compared to

 normal factories. Sadly, adding anything to commongui.gaf

 crash TA on startup. I urge ppl to try to find a solution

 if you're interested but personaly I'm flat out of ideas.

EVENT :

For a button to actualy do something, it has to be linked to an

event that's often hard coded. In MAINMENU.gui, you can see several

button gadgets, one named INTRO, Credits, MULTI, SINGLE and EXIT.

These 5 words are hard coded variable names for this menu. You cannot

had one from another menu, as far as I can tell. So you cant really

had functionalities to a TA menu, just substract some by not using them.

There's a lot of hard coded events, pretty much a completly different

new set for each menus. The only way to know them, is to look at

Cavedog original gui files and deduce them from the buttons in it.

Something interesting to note, is that while you cannot add events,

you can take out some. A use for this, is in a TC, to remove the

Cavedog Logo that looks kind of ugly.

A button with a name that isnt linked to an event will be pressable

but it wont have any impact on the game.

UNIVERSAL EVENT NAME :

As far as I can tell, HELPTEXT, works in every gui. It's used as

a label name, to make it display infos about a gadget your cursor

is on. It seems that the info is hard coded sadly, so you cant

add new ones. I'm really not sure about this so if anyone else

finds out gimme a call ^_^.

--

--

width/height

--

This one is pretty obvious, it just specify the with and height

of a gadget. However, it's useless for most types of gadgets, since

buttons, labels and picture boxes aren't affected by it.

--

--

xpos/ypos : Read, not so obvious detail inside.

--

These two tags represent the x, y coordinates of the gadget.

Pretty easy, but there's a detail to know. For the first gadget,

the x, y coordinates will be respected ONLY if it still allow the

interface to fit completly in the screen. This is why in

MAINMENU.gui, you need to reduce the interface width and height

to something smaller than 640x480 before you move it around.

--

--

active :

--

If 1, then the gadget will be visible, if 0 then it's invisible.

--

--

fontnumber :

--

I found ONE use for this but I'm sure I'm missing something.

When you set a custom font, it sets all the labels to this font.

Well if you set fontnumber to something differant than 0, then

it will use the default TA font again.

--

--

attribs :

--

There's only one use for it, that I've stumbled upon. For

scrollbars, the value for vertical one has to be 2 and 1 for

horizontal scrollbars.

--

--

assoc :

--

I did a lot of searching to find this one and I'm sure I'm only

scratching the surface.

What it does is very simple, it assocy gadgets together (duh). For 90%

of the gadgets I've seen so far, the value of assoc doesnt change

anything. It gets activated only when it's used with gadgets that are

what we'll call "assoc aware". So far, I found only 2 such gadget that

can communicate with each others, it's the scrollbar and the listbox.

When associated together, the listbox will tell the scrollbar how many

item it has, what length the knob should have etc. The scrollbar on

ther other hand, will tell the listbox when to scroll up or down the

list as the user moves it around.

useless side effect :

When 2 scrollbar have the same assoc number, using the arrows

to make the knob move will result in making the knob on the

other scrollbar move.

I'm sure there's more to it, but I cant seem to figure it out.

--

As far as I can tell, the following tags do nothing :

colorf/colorb,

texturenumber,

commonattribs.

--

UNCOMMON Tag descriptions :

--

I'll describe these tags with the gadget they're used with, it'll

simplify things greatly, since many have to be used in conjunction

with each others.

Many of these tags have default value of 0 or

an empty text but in game, the value isnt 0 or the text is

different. This is because for gadgets having Event name for

the current interface, TA do some special checks or in this case

it modify some variables value.

One last thing, some gadget are invisble in game but you KNOW

they're there and they should be visible. Things like buttons or

labels. This is because TA checks for gadgets with some

specific Event name and make them invisible under some circumstances.

--

Headers (ID 0) :

--

The header is the first gadget in an interface that I spoke of

earlier. The special tags are :

totalgadgets -> This is used to indicate the total number of

 gadgets in the interface but it's a bogus tag.

 It doesnt have any effect on the interface, that

 I can see.

panel -> This is used to set the background picture of the interface.

 If the interface already use a pcx based background, then

 leave it blank : panel=;

 Setting the gaf works a bit like the name tag, it refers to the name

 of a sequence in a gaf file with the same name as the gui menu

 or a sequence in the commongui.gaf.

crdefault -> I have no idea yet.

escdefault -> This indicate the name of the button that will be

 pressed when Escape is pressed.

defaultfocus -> This contain the name of the button that will be

 have the focus on by default when the interface

 open. (The focus is represented by the glowing rectangle)

Version -> This bit has to be added, after the common section.

 Put whatever value you want to, for the major, minor

 and revision. It doesnt matter.

[VERSION]

{

major=-51;

minor=-51;

revision=-51;

}

EXAMPLES :

[GADGET0]

{

[COMMON]

{

id=0;

assoc=205;

name=Mainmenu.GUI;

xpos=0;

ypos=0;

width=640;

height=480;

attribs=52685;

colorf=52685;

colorb=52685;

texturenumber=0;

fontnumber=-51;

active=1;

commonattribs=-51;

help=;

}

totalgadgets=6;

[VERSION]

{

major=100;

minor=-51;

revision=-51;

}

panel=;

crdefault=MULTI;

escdefault=IGPATCH;

defaultfocus=SINGLE;

}

--

--

Buttons (ID 1) :

--

The special tags for a button are :

status -> For simple buttons, this dictate which frame of the

 sequence in the gaf file the button will start on.

 If you go past the max number of frames in the sequence,

 the button will be invisible.

 For multiple stages buttons, the status has to be 0 or

 you'll get the wrong frame.

stages -> This is used to indicate the number of stages a button

 posses. For example, a On/Off button would have 2 stages.

text -> This is just the text of the button, type whatever you

 want to. For simple buttons, you just type your text,

 however, for multiple stages button, you have to

 use pipes to separate the text of each stages of the button.

 It works as follow (3 stages) : text=Continues|Ends|Deathmatch;

quickkey -> This is a shortcut key that you can set for the gadget.

 The key is an ascii number. Consult your nearest

 ASCII character table for more infos ^_^.

grayedout -> Tells if the button is grayed out not. It makes the

 button disabled but visible, unlike setting active

 to 0.

EXAMPLES :

Normal button ->

[GADGET4]

{

[COMMON]

{

id=1;

assoc=126;

name=INTRO;

xpos=409;

ypos=393;

width=96;

height=20;

attribs=2;

colorf=0;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=54;

help=;

}

status=0;

text=INTRO;

quickkey=73;

grayedout=0;

stages=0;

}

Multi Stage Button (2 stages) ->

[GADGET6]

{

[COMMON]

{

id=1;

assoc=0;

name=ARMPREV;

xpos=100;

ypos=283;

width=300;

height=40;

attribs=32;

colorf=240;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=0;

help=;

}

status=0;

text=On|Off;

quickkey=O;

stages=2;

Note that the text is aligned in the middle for simple buttons

and it's aligned to the right for multiple stages buttons.

--

--

Listbox (ID 2) :

--

Well sadly, there's no special tags for it, so I'll just

give an example :

[GADGET1]

{

[COMMON]

{

id=2;

assoc=1;

name=GAMES;

xpos=10;

ypos=10;

width=242;

height=176;

attribs=1;

colorf=15;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=54;

help=;

}

}

--

--

Textbox (ID 3) :

--

Pretty simple gadget, just indicate it's size and position.

maxchars -> The maximum number of character in the textbox.

EXAMPLE :

[GADGET9]

{

[COMMON]

{

id=3;

assoc=0;

name=ADDRESS;

xpos=53;

ypos=61;

width=250;

height=26;

attribs=0;

colorf=100;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=-125;

help=;

}

maxchars=30;

}

--

--

Scrollbar (ID 4) :

--

Wether it's a vertical or horizontal scrollbar is decided by

the width and height. One with say a width of 16 and a height of 184

will be a vertical scrollbar, where one with a width of 184 and a

height of 16 will be an horizontal scrollbar.

With the height and witdth, you'll get the graphic for the orientation

you want but to make it fully operational, you need the right

attribs value : 1 for horizontal and 2 for vertical.

range -> This is the number of item the scroll bar contains. This isnt

 important, because it seems TA will always change it for

 scrollbar that have Event name and have an associate,

 beside, the result inst visible.

thick -> ? Doesnt seem to affect anything.

knobpos -> I assume it's a position within the range of the number

 in the "range" tag. Sadly, you cant pre set it, it doesnt

 do anything.

knobsize -> This, is obviously the size of the know on the scrollbar.

 This too is usualy changed by TA when the srollbar has an

 associate.

EXAMPLES :

Vertical ->

[GADGET1]

{

[COMMON]

{

id=4;

assoc=243;

name=KNOB;

xpos=17;

ypos=30;

width=13;

height=150;

attribs=2;

colorf=4;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=0;

}

range=151;

thick=50;

knobpos=0;

knobsize=10;

}

Horizontal ->

[GADGET4]

{

[COMMON]

{

id=4;

assoc=243;

name=SLIDER;

xpos=317;

ypos=63;

width=150;

height=13;

attribs=1;

colorf=4;

colorb=0;

texturenumber=107;

fontnumber=0;

active=1;

commonattribs=10;

}

range=151;

thick=100;

knobpos=0;

knobsize=10;

}

--

--

Labels (ID 5) :

--

Labels are used to display text, you can place them anywhere

inside the interface and make them say whatever you want to.

text -> This is the text that the label will display on the screen.

 Like scrollbar, if the label name is an even name, then

 the text you picked might get changed by TA at run time.

link -> This is used to link a label to a button. What will happen

 is that when you click on the label instead of the button,

 it'll act just as if you clicked on the button. To make it

 work, just give the name of the target button as the link value.

EXAMPLE :

[GADGET3]

{

[COMMON]

{

id=5;

assoc=243;

name=TEXT;

xpos=476;

ypos=132;

width=117;

height=13;

attribs=17;

colorf=0;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=0;

help=;

}

text=Location;

link=StartLocation;

}

--

--

Blank Surfaces (ID 6) :

--

As I mentioned earlier, blank surfaces, are dynamic picture box.

They're used in TA mainly to display the Mini map, as a preview

when you're selecting a map, to show the screenshot of the minimap

of your saved games etc. Just make sure it has the right event name

so that TA can fill it with a nice picture.. Ooooooooooh a map.

(I'm tired I think ^_^;)

hotornot -> This is used to enable the selection rectangle visible

 on button and such to be visible on the Blank Surface.

 If hotornot = 1 then it's visible, if it's equal to 0

 then the focus rectangle is invisible.

EXAMPLE :

[GADGET2]

{

[COMMON]

{

id=6;

assoc=0;

name=MAPPIC;

xpos=328;

ypos=78;

width=252;

height=252;

attribs=0;

colorf=15;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=0;

help=;

}

hotornot=0;

}

--

--

Fonts (ID 7) :

--

This sets the default font for labels for the whole interface.

Sadly, I havent been able to change the font color or size yet,

so you're stuck with black colored fonts.

filename -> This is the name of the font you want to use, check the

 fonts directory to know the names of the font. It's very

 important that you only use the name of the font in

 filename and not include the extansion. So, for example,

 the files SMLFONT.FNT becomes filename=SMLFONT; .

EXAMPLE :

[GADGET1]

{

[COMMON]

{

id=7;

assoc=243;

name=FONT2;

xpos=600;

ypos=321;

width=26;

height=66;

attribs=13;

colorf=15;

colorb=0;

texturenumber=100;

fontnumber=9;

active=1;

commonattribs=-125;

help=;

}

filename=SMLFONT;

}

--

--

Picture Box (ID 12) :

--

This allow you to display a picture of a gaf sequence. As usual,

the name correspond to the sequence in the gaf file that you

want the picture to display.

[GADGET13]

{

[COMMON]

{

id=12;

assoc=0;

name=IGPATCH;

xpos=0;

ypos=0;

width=300;

height=40;

attribs=2;

colorf=15;

colorb=0;

texturenumber=0;

fontnumber=0;

active=1;

commonattribs=86;

help=;

}

}

--

Well that's it for now. I'll probably update when I find what the

3 mystery tags do ^_^. For more infos or questions email

me at rochdenis@hotmails.com

GAF Format

[image: image12.png]

This is a description of the GAF file format used by TA to store all kinds

of graphic elements, including animations, static pictures, user interface

elements, etc.

Credits:

This document builds on the original by Saruman and Bobban.

In addition, I got much helpful info from Bizmut, Kinboat, and Manu.

I even figured a couple of things out myself, but the people listed above

did most of it.

Warning: This is intended for use by people that already know what they're

doing.

I'm a C programmer, so I'm doing things in C notation here, but I'll try to

explain it so that those of you that don't speak C will be able to

understand. If you don't understand, write me at joed@cws.org and I'll try

to clear things up.

I'm also a big believer in examples, so I'll be walking you through a GAF

file (Archipelago.GAF) as I explain.

The first part of the file is the header, which looks like this:

typedef struct _GAFHEADER {

 long IDVersion; /* Version stamp - always 0x00010100 */

 long Entries; /* Number of items contained in this file */

 long Unknown1; /* Always 0 */

} GAFHEADER;

Let's look at a sample header:

00000000 00 01 01 00 39 00 00 00 00 00 00 00

IDVersion is 0x00010100 like we expect. Entries is 0x39, indicating that

there are 57 items contained in this file.

Immediately following the header is a list of pointers, one for each entry.

The list of pointers here looks like:

00000000 68 EA 04 00

00000010 98 EA 04 00 C8 EA 04 00 F8 EA 04 00 78 EB 04 00

00000020 A0 EB 04 00 C0 ED 04 00 40 EE 04 00 68 EE 04 00

00000030 98 EE 04 00 C8 EE 04 00 F8 EE 04 00 78 EF 04 00

00000040 A8 EF 04 00 C8 F1 04 00 48 F2 04 00 78 F2 04 00

00000050 A8 F2 04 00 D8 F2 04 00 08 F3 04 00 88 F3 04 00

00000060 A8 F5 04 00 28 F6 04 00 58 F6 04 00 88 F6 04 00

00000070 B8 F6 04 00 E8 F6 04 00 18 F7 04 00 B8 F7 04 00

00000080 E8 F7 04 00 20 FB 04 00 C0 FB 04 00 F0 FB 04 00

00000090 20 FC 04 00 50 FC 04 00 80 FC 04 00 20 FD 04 00

000000A0 68 00 05 00 08 01 05 00 38 01 05 00 68 01 05 00

000000B0 98 01 05 00 C8 01 05 00 68 02 05 00 98 02 05 00

000000C0 F0 05 05 00 90 06 05 00 C0 06 05 00 F0 06 05 00

000000D0 68 07 05 00 28 08 05 00 58 08 05 00 88 08 05 00

000000E0 B8 08 05 00 E8 08 05 00 18 09 05 00 48 09 05 00

The next byte after the pointer list is at offset F0. Remember this.

Each pointer points to a structure that looks like this:

typedef struct _GAFENTRY {

 short Frames; /* Number of frames in this entry */

 short Unknown1; /* Unknown - always 1 */

 long Unknown2; /* Unknown - always 0 */

 char Name[32]; /* Name of the entry */

} GAFENTRY;

The first pointer is directs us to location 0x04EA68. Going

there, we find:

0004EA60 01 00 01 00 00 00 00 00 t...............

0004EA70 46 72 6F 6E 64 30 31 00 00 00 00 00 00 00 00 00 Frond01.........

0004EA80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This entry has 1 frame, and is called 'Frond01'.

Following each entry is another list of structures, one for each frame.

typedef struct _GAFFRAMEENTRY {

 long PtrFrameTable; /* Pointer to frame data */

 long Unknown1; /* Unknown - varies */

} GAFFRAMEENTRY;
The frame entry looks like this:

0004EA90 78 D5 03 00 02 00 00 00

PtrFrameTable is 0x03D578. This points us to a structure containing data

about the first frame in this entry. It looks like this:

typedef struct _GAFFRAMEDATA {

 short Width; /* Width of the frame */

 short Height; /* Height of the frame */

 short XPos; /* X offset */

 short YPos; /* Y offset */

 char Unknown1; /* Unknown - always 9 */

 char Compressed; /* Compression flag */

 short FramePointers; /* Count of subframes */

 long Unknown2; /* Unknown - always 0 */

 long PtrFrameData; /* Pointer to pixels or subframes */

 long Unknown3; /* Unknown - value varies */

} GAFFRAMEDATA;

Here's the data:

0003D570 31 00 1F 00 15 00 0F 00

0003D580 09 01 00 00 00 00 00 00 F0 00 00 00 00 00 00 00

Width and height are (duh) the width and height of the frame. This frame is

0x31 by 0x1F pixels (49 x 31).

XPos and YPos are actually offsets that give the displacement of the frame

from the entry's actual position on the map. So if the entry itself was

placed at position 100,100, the frame would be at position

100-XPos,100-YPos. These offset can be negative. Here, they place the frame

at 21 pixels left, and 15 pixels above the initial placement of the item on

the map.

Unknown1 is always 9. No idea what it really means.

Compressed is the compression flag. If it's 0, the image is not compressed.

This image is compressed. More on this in a bit.

FramePointers. This is where it gets a little weird. If FramePointers is

0, then PtrFrameData points to pixel data. If it isn't, then PtrFrameData

points to a list of that many more pointers to GAFFRAMEDATA structures.

Each of these subframes is collectively treated as one frame. More in this

in a bit.

Unknown2 is always 0.

PtrFrameData points to the pixel data or to more GAFFRAMEDATA structures,

depending on the value of FramePointers. Here it's pointing to offset 0xF0.

If you remember, this is the first byte after the list of entry pointers way

back at the start of the file.

Unknown3 is a mystery. Sometimes the value is 0. Sometimes it isn't. No

idea what it means or how to calculate it.

Ok. Now we have this frame entry. Since FramePointers is 0, PtrFrameData

points to pixel data. If the frame were not compressed, it'd just be the

raw pixels, 31 chunks of 49 bytes each, corresponding to each line. This

frame is compressed, so things are a little different.

Let's look at the data:

000000F0 07 00 29 00 44 17 00 45 21 0E 00 1B 00 44 17 04

00000100 44 B3 07 00 45 09 00 44 1B 10 00 1B 00 A3 0D 00

00000110 44 07 00 A2 03 00 A2 0F 00 44 1D 16 00 13 00 45

00000120 07 00 44 03 00 45 13 00 44 03 00 45 09 00 45 03

00000130 00 A3 1D 1F 00 15 00 45 07 04 44 A3 07 00 45 03

00000140 00 44 03 00 44 03 00 A3 03 00 45 03 00 45 03 08

00000150 44 B3 A2 1F 1D 00 09 04 45 44 0B 04 44 45 07 08

00000160 44 A3 44 03 00 A2 03 04 A2 B3 05 00 45 05 08 44

00000170 A3 B3 23 25 00 0D 00 45 03 04 B3 44 05 00 45 07

00000180 08 A3 44 B3 03 04 44 5B 05 06 45 05 00 44 03 04

00000190 A2 45 09 04 44 45 07 00 44 0F 2B 00 0F 00 A2 03

000001A0 00 45 03 00 45 03 00 44 03 00 45 03 04 B4 35 03

000001B0 00 B3 05 08 45 B3 44 03 04 A2 46 03 08 B4 44 A2

000001C0 05 00 44 0D 00 44 0D 2B 00 09 00 45 05 34 45 44

000001D0 A3 45 A2 44 B4 45 45 B3 36 45 45 35 03 0C A2 46

000001E0 A3 45 03 04 45 46 03 00 A2 03 04 B3 45 03 00 45

000001F0 0B 00 44 0F 28 00 0B 04 45 A2 05 38 B2 A3 B4 A2

00000200 A2 B4 45 A2 45 45 A3 46 44 46 44 03 14 A2 46 46

00000210 44 B3 37 03 00 35 03 04 A2 45 05 06 45 13 2B 00

00000220 04 A3 44 03 00 44 07 34 B4 A2 44 45 46 45 46 A2

00000230 A2 46 A2 B4 46 A2 03 04 B3 44 03 24 B2 A2 44 A2

00000240 36 A2 45 B4 A2 46 03 04 46 44 17 2A 00 09 08 44

00000250 A3 44 05 08 A3 45 36 03 60 A2 45 B2 45 45 A2 A2

00000260 B4 44 A3 35 45 A3 44 B4 A2 46 B2 45 A2 A2 B2 46

00000270 44 A3 07 04 A2 45 0D 29 00 0B 10 44 45 45 B3 45

00000280 03 60 46 44 45 46 A2 45 B3 45 B2 35 A3 44 B3 A3

00000290 B4 A1 46 45 45 A2 46 A2 B4 45 45 03 0C 46 44 A2

000002A0 45 11 2F 00 00 44 03 0C 44 A3 45 B3 03 04 45 35

000002B0 03 00 44 03 0C 45 B4 45 B4 03 58 46 A2 45 B3 44

000002C0 A3 44 45 A2 46 44 45 45 46 44 44 45 A2 44 45 B4

000002D0 A2 46 13 28 00 00 A3 05 00 45 07 00 46 03 00 45

000002E0 03 04 45 A3 0E 45 48 A2 46 45 A2 46 B4 A2 45 46

000002F0 B3 46 45 46 46 45 A2 A2 B4 A3 0A 45 15 31 00 0B

00000300 20 A2 45 45 35 B3 44 46 45 45 03 06 45 00 46 03

00000310 5C A2 46 44 A2 45 B3 45 45 46 36 B3 A1 A3 44 B2

00000320 A2 45 B4 A2 A2 B3 45 44 45 03 04 A3 44 05 00 44

00000330 2F 00 07 00 45 03 04 45 A3 03 14 B3 36 A3 B2 45

00000340 45 03 70 45 A3 B3 36 45 46 B3 A2 44 A3 45 A3 44

00000350 46 35 B4 45 B3 35 46 A2 36 45 B4 36 A2 A3 B2 45

00000360 0B 2C 00 09 00 45 07 0C A3 45 45 36 03 06 45 20

00000370 B4 45 A2 5B 46 36 45 B4 45 03 24 46 44 46 B3 A2

00000380 45 45 A3 A1 B4 05 0C 46 A2 B4 5A 07 00 45 09 2A

00000390 00 07 00 45 03 04 44 45 03 3C 45 B3 A2 45 45 38

000003A0 A2 45 44 45 45 46 45 45 A2 45 03 28 37 B4 45 A2

000003B0 46 44 46 45 46 45 45 07 00 45 13 26 00 09 28 A3

000003C0 45 B3 A2 46 45 A2 B2 A3 44 38 03 04 B3 45 03 00

000003D0 45 03 00 45 09 18 45 46 A1 36 B4 A2 46 05 08 B3

000003E0 45 45 17 27 00 0F 00 46 0A 45 08 A3 45 46 03 06

000003F0 5B 00 A3 03 0C 5B 45 45 37 05 04 45 A2 03 04 45

00000400 B4 03 04 45 A2 07 00 45 05 00 45 13 24 00 09 06

00000410 45 14 46 44 A3 44 B3 45 03 00 38 05 00 5A 05 04

00000420 44 A3 07 14 46 45 B2 35 45 A2 05 04 44 45 0D 06

00000430 45 0F 23 00 07 00 45 09 04 B3 37 03 00 45 05 00

00000440 36 03 00 44 03 04 45 B3 05 20 45 44 A2 46 44 A3

00000450 B3 44 45 0B 00 44 19 1B 00 0D 0C 45 A2 5A 37 0B

00000460 04 44 A3 03 04 46 A3 03 08 35 B3 45 07 04 B3 45

00000470 0F 00 A3 19 1C 00 0B 04 44 A2 07 00 46 07 08 44

00000480 46 44 07 06 45 03 00 45 03 00 45 03 00 35 03 00

00000490 A2 27 15 00 09 00 45 11 08 44 45 A3 09 00 44 05

000004A0 00 A2 0B 00 46 0F 00 44 17 0B 00 1B 00 A3 11 04

000004B0 B3 44 0D 00 44 25 08 00 19 04 B3 44 0B 00 44 3B

000004C0 07 00 19 00 36 0D 00 45 3B 07 00 27 00 A2 05 00

000004D0 A2 35 04 00 2B 00 44 37
PtrFrameData points to a short integer that is a count of bytes for the

first line. Skip ahead that many bytes, and you get to a count for the

second line, etc, etc. The first line is 7 bytes long, and consists of 29

00 44 17 00 45 21. The Height parameter tells you how many lines there are,

in this case, 31. Broken into lines, minus the length data, we get:

Line 0 29 00 44 17 00 45 21

Line 1 1B 00 44 17 04 44 B3 07 00 45 09 00 44 1B

Line 2 1B 00 A3 0D 00 44 07 00 A2 03 00 A2 0F 00 44 1D

Line 3 13 00 45 07 00 44 03 00 45 13 00 44 03 00 45 09 00 45 03 00 A3 1D

Line 4 15 00 45 07 04 44 A3 07 00 45 03 00 44 03 00 44 03 00 A3 03 00 45 03 00 45 03 08 44 B3 A2 1F

Line 5 09 04 45 44 0B 04 44 45 07 08 44 A3 44 03 00 A2 03 04 A2 B3 05 00 45 05 08 44 A3 B3 23

Line 6 0D 00 45 03 04 B3 44 05 00 45 07 08 A3 44 B3 03 04 44 5B 05 06 45 05 00 44 03 04 A2 45 09 04 44 45 07 00 44 0F

Line 7 0F 00 A2 03 00 45 03 00 45 03 00 44 03 00 45 03 04 B4 35 03 00 B3 05 08 45 B3 44 03 04 A2 46 03 08 B4 44 A2 05 00 44 0D 00 44 0D

Line 8 09 00 45 05 34 45 44 A3 45 A2 44 B4 45 45 B3 36 45 45 35 03 0C A2 46 A3 45 03 04 45 46 03 00 A2 03 04 B3 45 03 00 45 0B 00 44 0F

Line 9 0B 04 45 A2 05 38 B2 A3 B4 A2 A2 B4 45 A2 45 45 A3 46 44 46 44 03 14 A2 46 46 44 B3 37 03 00 35 03 04 A2 45 05 06 45 13

Line 10 04 A3 44 03 00 44 07 34 B4 A2 44 45 46 45 46 A2 A2 46 A2 B4 46 A2 03 04 B3 44 03 24 B2 A2 44 A2 36 A2 45 B4 A2 46 03 04 46 44 17

Line 11 09 08 44 A3 44 05 08 A3 45 36 03 60 A2 45 B2 45 45 A2 A2 B4 44 A3 35 45 A3 44 B4 A2 46 B2 45 A2 A2 B2 46 44 A3 07 04 A2 45 0D

Line 12 0B 10 44 45 45 B3 45 03 60 46 44 45 46 A2 45 B3 45 B2 35 A3 44 B3 A3 B4 A1 46 45 45 A2 46 A2 B4 45 45 03 0C 46 44 A2 45 11

Line 13 00 44 03 0C 44 A3 45 B3 03 04 45 35 03 00 44 03 0C 45 B4 45 B4 03 58 46 A2 45 B3 44 A3 44 45 A2 46 44 45 45 46 44 44 45 A2 44 45 B4 A2 46 13

Line 14 00 A3 05 00 45 07 00 46 03 00 45 03 04 45 A3 0E 45 48 A2 46 45 A2 46 B4 A2 45 46 B3 46 45 46 46 45 A2 A2 B4 A3 0A 45 15

Line 15 0B 20 A2 45 45 35 B3 44 46 45 45 03 06 45 00 46 03 5C A2 46 44 A2 45 B3 45 45 46 36 B3 A1 A3 44 B2 A2 45 B4 A2 A2 B3 45 44 45 03 04 A3 44 05 00 44

Line 16 07 00 45 03 04 45 A3 03 14 B3 36 A3 B2 45 45 03 70 45 A3 B3 36 45 46 B3 A2 44 A3 45 A3 44 46 35 B4 45 B3 35 46 A2 36 45 B4 36 A2 A3 B2 45 0B

Line 17 09 00 45 07 0C A3 45 45 36 03 06 45 20 B4 45 A2 5B 46 36 45 B4 45 03 24 46 44 46 B3 A2 45 45 A3 A1 B4 05 0C 46 A2 B4 5A 07 00 45 09

Line 18 07 00 45 03 04 44 45 03 3C 45 B3 A2 45 45 38 A2 45 44 45 45 46 45 45 A2 45 03 28 37 B4 45 A2 46 44 46 45 46 45 45 07 00 45 13

Line 19 09 28 A3 45 B3 A2 46 45 A2 B2 A3 44 38 03 04 B3 45 03 00 45 03 00 45 09 18 45 46 A1 36 B4 A2 46 05 08 B3 45 45 17

Line 20 0F 00 46 0A 45 08 A3 45 46 03 06 5B 00 A3 03 0C 5B 45 45 37 05 04 45 A2 03 04 45 B4 03 04 45 A2 07 00 45 05 00 45 13

Line 21 09 06 45 14 46 44 A3 44 B3 45 03 00 38 05 00 5A 05 04 44 A3 07 14 46 45 B2 35 45 A2 05 04 44 45 0D 06 45 0F

Line 22 07 00 45 09 04 B3 37 03 00 45 05 00 36 03 00 44 03 04 45 B3 05 20 45 44 A2 46 44 A3 B3 44 45 0B 00 44 19

Line 23 0D 0C 45 A2 5A 37 0B 04 44 A3 03 04 46 A3 03 08 35 B3 45 07 04 B3 45 0F 00 A3 19

Line 24 0B 04 44 A2 07 00 46 07 08 44 46 44 07 06 45 03 00 45 03 00 45 03 00 35 03 00 A2 27

Line 25 09 00 45 11 08 44 45 A3 09 00 44 05 00 A2 0B 00 46 0F 00 44 17

Line 26 1B 00 A3 11 04 B3 44 0D 00 44 25

Line 27 19 04 B3 44 0B 00 44 3B

Line 28 19 00 36 0D 00 45 3B

Line 29 27 00 A2 05 00 A2 35

Line 30 2B 00 44 37

To decode the line, to the following:

1. Read a byte. This is a mask.

2. If (mask & 0x01) = 0x01

 skip ahead (mask >> 1) pixels. This is transparency, allowing whatever

 was under the frame to show through.

 else if (mask & 0x02) = 0x02

 copy the next byte (mask >> 2)+1 times to output.

 else

 copy the next (mask & 0x02)+1 bytes to output.

3. go back to 1, until there are no more bytes left in the line.

A C code fragment to do this is:

 char *data; // points to pixel data

for (y = 0; y < FrameData.Height; y++) {

 bytes = *((short *) data);

 data += sizeof(short);

 count = 0;

 x = 0;

 while (count < bytes) {

 mask = (unsigned char) data[count++];

 if ((mask & 0x01) == 0x01) {

 // transparent

 x += (mask >> 1);

 else if ((mask & 0x02) == 0x02) {

 // repeat next byte

 repeat = (mask >> 2) + 1;

 while (repeat--)

 putpixel(x++, y, data[count]);

 count++;

 }

 else {

 repeat = (mask >> 2) + 1;

 while (repeat--)

 putpixel(x++, y, data[count++]);

 }

 }

 data += bytes; // point to next line

}

We do this to the above mess of data, and we get:

Line 0 44 45 *

Line 1 44 44 B3 45 44 *

Line 2 A3 44 A2 A2 44 *

Line 3 45 44 45 44 45 45 A3 *

Line 4 45 44 A3 45 44 44 A3 45 45 44 B3 A2 *

Line 5 45 44 44 45 44 A3 44 A2 A2 B3 45 44 A3 B3 *

Line 6 45 B3 44 45 A3 44 B3 44 5B 45 45 44 A2 45 44 45 44 *

Line 7 A2 45 45 44 45 B4 35 B3 45 B3 44 A2 46 B4 44 A2 44 44 *

Line 8 45 45 44 A3 45 A2 44 B4 45 45 B3 36 45 45 35 A2 46 A3 45 45 46 A2 B3 45 45 44 *

Line 9 45 A2 B2 A3 B4 A2 A2 B4 45 A2 45 45 A3 46 44 46 44 A2 46 46 44 B3 37 35 A2 45 45 45 *

Line 10 A3 44 44 B4 A2 44 45 46 45 46 A2 A2 46 A2 B4 46 A2 B3 44 B2 A2 44 A2 36 A2 45 B4 A2 46 46 44 *

Line 11 44 A3 44 A3 45 36 A2 45 B2 45 45 A2 A2 B4 44 A3 35 45 A3 44 B4 A2 46 B2 45 A2 A2 B2 46 44 A3 A2 45 *

Line 12 44 45 45 B3 45 46 44 45 46 A2 45 B3 45 B2 35 A3 44 B3 A3 B4 A1 46 45 45 A2 46 A2 B4 45 45 46 44 A2 45 *

Line 13 44 44 A3 45 B3 45 35 44 45 B4 45 B4 46 A2 45 B3 44 A3 44 45 A2 46 44 45 45 46 44 44 45 A2 44 45 B4 A2 46 *

Line 14 A3 45 46 45 45 A3 45 45 45 45 A2 46 45 A2 46 B4 A2 45 46 B3 46 45 46 46 45 A2 A2 B4 A3 45 45 45 *

Line 15 A2 45 45 35 B3 44 46 45 45 45 45 46 A2 46 44 A2 45 B3 45 45 46 36 B3 A1 A3 44 B2 A2 45 B4 A2 A2 B3 45 44 45 A3 44 44*

Line 16 45 45 A3 B3 36 A3 B2 45 45 45 A3 B3 36 45 46 B3 A2 44 A3 45 A3 44 46 35 B4 45 B3 35 46 A2 36 45 B4 36 A2 A3 B2 45 *

Line 17 45 A3 45 45 36 45 45 B4 45 A2 5B 46 36 45 B4 45 46 44 46 B3 A2 45 45 A3 A1 B4 46 A2 B4 5A 45 *

Line 18 45 44 45 45 B3 A2 45 45 38 A2 45 44 45 45 46 45 45 A2 45 37 B4 45 A2 46 44 46 45 46 45 45 45 *

Line 19 A3 45 B3 A2 46 45 A2 B2 A3 44 38 B3 45 45 45 45 46 A1 36 B4 A2 46 B3 45 45 *

Line 20 46 45 45 45 A3 45 46 5B 5B A3 5B 45 45 37 45 A2 45 B4 45 A2 45 45 *

Line 21 45 45 46 44 A3 44 B3 45 38 5A 44 A3 46 45 B2 35 45 A2 44 45 45 45 *

Line 22 45 B3 37 45 36 44 45 B3 45 44 A2 46 44 A3 B3 44 45 44 *

Line 23 45 A2 5A 37 44 A3 46 A3 35 B3 45 B3 45 A3 *

Line 24 44 A2 46 44 46 44 45 45 45 45 35 A2 *

Line 25 45 44 45 A3 44 A2 46 44 *

Line 26 A3 B3 44 44 *

Line 27 B3 44 44 *

Line 28 36 45 *

Line 29 A2 A2 *

Line 30 44 *
This is essentially a big green splat, used to represent a patch of

reclaimable foliage.

This entry is very simple. One frame. No subframes. If there were

multiple frames, you'd display each frame in sequence. If the FramePointers

member were not 0, then instead of pixels, PtrFrameData would point to a

list of pointers that had that many entries. Each pointer would point to

another GAFFRAMEDATA entry. When you are assembling that frame, you would

paint all the subframes in order, and treat the whole thing as one single

frame for animation purposes.

I think I've covered everything. If you have any questions, let me know.

SCT Format

[image: image13.png]

Written by Kinboat, 1998.

** Note **

In order for these sections to work in TAE, their dimensions must be

a multiple of 128.

** File Header (28 bytes) *)

typedef struct _SCTHEADER {

 long Version;

// SCT Version. Set to 3.

 long PtrMinimap;
// Offset to the section's minimap.

 long NumTiles;
// The number of tiles in the section.

 long PtrTiles;
// Offset to the section's tiles.

 long Width;

// Width of the section.

 long Height;

// Height of the section.

 long PtrData;

// Offset to the section's data.

} SCTHEADER;

** TileData (PtrTiles) **

Each tile is 32x32 pixels.

BYTE TileData[NumTiles * 1024];

** SectionData (PtrSectionData) **

short SectionData[SectionWidth*SectionHeight];

 This array is an array of index values pointing to tiles stored in

 the TileData.

typedef struct _HEIGHTDATA {

 BYTE Height;

// Height value.

 short Constant1;
// Always -1.

 BYTE Constant2;
// Always 0.

} HEIGHTDATA;

HEIGHTDATA HeightData[SectionWidth * SectionHeight * 4]

 This is an array to the 3D height data for the section. Each tile

 pointed to by SectionData has 4 height values.

** Minimap (PtrMinimap) **

BYTE Minimap[128 * 128];

OTA Format

[image: image14.png]

Initial Mission Commands

The Initial Mission selection is the true heart of mission creation. Most missions created do not rely on the AI to handle the battle, rather, everything is carefully planned ahead. Having units wait until they are attacked, having groups of units attack at the same time, having them target specific units, even roving patrols, are all commands that are set here. Giving all (or most) of your enemy units a series of commands that interact and mesh to make an appropriate defense (and offense) is what mission creation is all about. If a Unit is given no initial commands, or runs out of commands, the AI will take over, if it is a Computer controlled Unit (anything other than Player 1). If it is a Player controlled Unit and you want the Player to be able to interrupt the initial commands, insert a "s" (to make it selectable) in the initial command list.

What follows is a list of the available commands; use a comma to separate commands. Remember that all unit references should be to the unit’s name, not the unit’s description (e.g. CORTL not Core Torpedo Launcher).

m X Y

Tells the Unit to move to coordinates X and Y as measured in pixels; see "Location" on the Status Bar at the bottom of the program window.

p X Y

Tells the unit to patrol from the coordinate at which it is presently to the coordinate that follows the "p" and back again. If only one coordinate is given the computer will assume the starting point to be the second point in the command list. If you give two points (p X Y X Y), the unit will patrol between those two points. If you give three points, the Unit will patrol between those three points in the order given, etc. You can specify any number of points in this way. The patrol command should be at the end of the command list, since once on patrol, it will ignore all later commands.

a UNITNAME

Tells the Unit to attack the nearest specified Unit. This could be either a Unit Type (for example "a ARMCOM") or a unique identifier (for example "a FRED"). If there are no units of the specified Type, the AI will take control of the unit.

w SECONDS

Tells Unit to wait at its present location for the specified number of seconds before continuing with the command list. You can specify fractional seconds (e.g. "w 0.5").

b UNITTYPE X Y

Mobile Construction Units only. Tells the Construction Unit (or Commander) to build a Unit of the specified Type at location X Y.

b UNITTYPE n

Construction Building. Tells the Construction Building to build n Units of type UNITTYPE on its construction pad.

d

Destroys the Unit instantly.

s

Makes the Unit selectable even though the initial command list isn’t completed yet, allowing the AI or player to take control of the Unit.

i UNITNAME

Place this Unit in the specified transport. (e.g. "i ARMSHIP" or if there is more than one transport give the transport a unique identifier e.g. "i JAKE").

u XY

You can then tell the transport where to unload the unit that it carries by designating u XY.

wa

In the initial mission list will wait until the unit is attacked.

"wa otherunit" will wait until otherunit is attacked. This works like the "i" mission--otherunit identifies a specific unit, not a general type of unit. In order for this command to work, ‘otherunit’ must be given a unique name.

Example: Let’s say for a moment, that you’re in the middle of creating an Arm mission, for which the goal is to get your squad of Zeus into the enemy’s base and take out their fusion plant. While setting up the defenses, you might program a fleet of Rapier gunships to wait until the Arm lightning-chuckers have destroyed a radar tower abandoned in the middle of a valley, move to co-ordinates 513, 700, followed by a run on the Arm Commander, nestled in it’s camp. To spring your little trap, you would need to do the following setup.

-Place radar tower with unique name (e.g. "TRAP")

-Place Rapier units, each with the following initial command string:

wa TRAP, a ARMZEUS, m 513 700, a ARMCOM

-It’s very important to make sure that you’ve provided the player with at least one Zeus unit to start with. If there is no Zeus units on the map, the Rapiers will simply skip that command and go straight after the Commander. Upon destruction of the radar tower by any other unit than a Zeus, the Rapiers will still search out the Zeus and try to kill it.

BugFix Information

[image: image15.png]

By Switeck
Unit ID Number Changes:

18 Cavedog units share the same unit id #:

Unit Name Description id# new id#

------ ---------------- ----------- --- -------

ARMCA Construction Aircraft Tech Level 1 18 18

ARMCSA Construction Seaplane Tech Level 1 18 *CONFLICT: ARMCA 400 *

CORCA Construction Aircraft Tech Level 1 90 90

CORCSA Construction Seaplane Tech Level 1 90 *CONFLICT: CORCSA 403 *

ARMDECOM Decoy Commander Decoy Commander 232 232

CORDECOM Decoy Commander Decoy Commander 232 *CONFLICT: ARMDECOM 404 *

ARMPLAT Seaplane Platform Builds Seaplanes 242 242

CORPLAT Seaplane Platform Builds Seaplanes 242 *CONFLICT: ARMPLAT 405 *

ARMMANNI Penetrator Mobile Energy Weapon 269 401 *

CORSUMO Sumo Adv. Armored Assault Kbot 269 *CONFLICT: ARMMANNI 269

CORSS Sea Serpent Indigenous Lifeform 277 406 *

CORSSUB Leviathan Battle Sub 277 *CONFLICT: CORSS 277

CORUWES Underwater Energy Storage Increases Energy Storage 293 293

CORUWMS Underwater Metal Storage Increases Metal Storage 293 *CONFLICT: CORUWES 407 *

ARMUWES Underwater Energy Storage Increases Energy Storage 298 298

ARMUWMS Underwater Metal Storage Increases Metal Storage 298 *CONFLICT: ARMUWES 402 *

ARMEMP Stunner EMP Missile Launcher 322

CORMABM Hedgehog Mobile Missile Defense 322 *CONFLICT: ARMEMP 408 *

CORPLAS Immolator Plasma Tower 124 *CONFLICT: CORPUN 409 *

The * (asterick) means changed.

ALL FIXED -- by moving the conflicting units to different unit id #'s, starting at 400 and going to 409. This should be safe so long as Cavedog doesn't create nearly 100 new units. According to Cavedog, this bug has no effect on gameplay - but since I'm removing other bugs, I'm removing this bug as well!

Weapon ID Number Changes:

All of the Cavedog weapon id's (in numerical order) are in 1 MASTER weapons.tdf file in the weapons dir (in REV31.GP3) instead of divided up among many little files of only a weapon or 2 each. The other files are of zero-length to force TA to forget all the incorrect and redundant entries in ccdata.ccx and totala1.hpi.

Although there is only 255 weapon id #'s to work with, Cavedog has quite a few weapons id #'s that have unused weapons in them. Plus there is quite a few duplicates among Cavedog's weapons. I don't mean just similar - I mean identical down to the picture, speed, turn rate, and even acceleration speed of the weapon. Although it's a lot of work, it's just going through the unit FBI files and referring them to the same weapon id and going through weapons id #'s and deleting the unused ones. The problem is, getting TA both to recognize the changes and ignore the old id's. To do that, I have to change around a lot of stuff in REV31.GP3 -- it's the only file that overrides other files containing identical FBI's and weapons id's. For old weapons id #'s to be ignored, I have made empty files of the same name and put the whole weapon id #'s list in a single WEAPONS.TDF file.

With my tests so far, it all seems to work -- even units with 2 identical weapons such as the Seaplanes and Stealth Fighters seem to work correctly.

Cavedog IDENTICAL and UNUSED weapon id's!

 Weapon Area of Cost Reload

ID Name Range Damage Effect Metal Energy Path Time

--

7 MINDGUN 500 100 16 - - L 1 unused! *

8 SBMISSILE 300 80 16 - - L 1.6 unused! *

19 VTOL_EMG2 (unused!) 510 12 8 - - L .6 burst=3 burst rate=.1 *

22 ARM_DISINTEGRATOR 240 30000 48 - 400 L 1.2

23 CORE_DISINTEGRATOR 240 30000 48 - 400 L 1.2 *

30 AMD_ROCKET 32000 500 96 200 10000 L 120

117 ARMSCAB_WEAPON 27000 500 96 200 10000 L 120

* -- see NOTE #1

32 FMD_ROCKET 32000 500 96 200 10000 L 120

118 CORMABM_WEAPON 22000 500 96 200 10000 L 120

* -- see NOTE #1

38 ARMAMPH_WEAPON2 700 46(97) 48 - - L 2 *

106 ARMRL_MISSILE 700 46(97) 48 - - L 2

43 CORFLAK_GUN 750 146 125 - - B .7 Flak

79 ARMAAS_WEAPON3 750 146 125 - - B .7 Flak *

180 CORARCH_WEAPON3 750 146 125 - - B .7 Flak *

50 ARM_LIGHTCANNON 240 50 32 - - B 1.53

51 CORE_LIGHTCANNON 240 50 32 - - B 1.53 *

55 CORE_THUD 230 80 48 - - B 1.9

159 CORAMPH_WEAPON1 230 80 48 - - B 1.9 *

75 ARMSFIG_WEAPON 510 50(140) 48 - - L 3

76 CORSFIG_WEAPON 510 50(140) 48 - - L 3 *

96 ARMSFIG_WEAPON2 510 50(140) 48 - - L 3 *

97 CORSFIG_WEAPON2 510 50(140) 48 - - L 3 *

77 ARMAAS_WEAPON1 710 57(108) 48 - - L 2 -- see NOTE #2

78 ARMAAS_WEAPON2 710 57(108) 48 - - L 2 *

103 ARMSHIP_MISSILE 710 57(108) 48 - - L 2

178 CORARCH_WEAPON1 710 57(108) 48 - - L 2 *

179 CORARCH_WEAPON2 710 57(108) 48 - - L 2 *

82 ARM_LASER 180 30 8 - - L .865 *

88 CORE_LASER 180 30 8 - - L .865

95 ARMSEAP_WEAPON3 510 44(130) 48 - - L 3 *

98 CORSEAP_WEAPON3 510 44(130) 48 - - L 3 *

108 ARMVTOL_MISSILE 510 44(130) 48 - - L 3

107 CORRL_MISSILE 700 45(95) 48 - - L 2

148 CORFRT_MISSILE 700 45(95) 48 - - L 2 *

112 ARMVTOL_ADVMISSILE 659 70(150) 48 - - L 3

115 ARMVTOL_ADVMISSILE2 659 70(150) 48 - - L 3 * -- see NOTE #3

113 CORVTOL_ADVMISSILE 650 68(155) 48 - - L 3

114 CORVTOL_ADVMISSILE2 650 68(155) 48 - - L 3 *

146 ARMSEAP_WEAPON1 300 400 16 - - L 6

152 CORSEAP_WEAPON1 300 400 16 - - L 6 *

193 ARMSEAP_WEAPON2 300 400 16 - - L 6 *

194 CORSEAP_WEAPON2 300 400 16 - - L 6 *

145 ARMSCORP_WEAPON 320 400 8 - - L 1.2 *

181 CORSCORP_WEAPON 320 400 8 - - L 1.2

143 ARMFRT_MISSILE 700 46(97) 48 - - L 2 unused! *

157 ARMFARK_WEAPON 320 112 48 - - B 1.8 unused!
*

158 ARMSCRAM_WEAPON 320 112 48 - - B 1.8 unused! *

162 CORHUNT_WEAPON 320 112 48 - - B 1.8 unused! *

164 ARMSEHAK_WEAPON 320 112 48 - - B 1.8 unused! *
The * (asterick) shows the weapon id #'s that have been freed up with the removal of that weapon.

This patch frees up 32 weapons id #'s.

These are the weapon ID#'s removed in numerical order:

7,8,19,23,38,51,76,78,79,82,95,96,97,98,114,115,117,118,143,145,148,152,157,158,159,162,164,178,179,180,193,194

7,8,19,143,157,158,162,164 are never used even in the original game!

All of Cavedog's units use 197 weapon id #'s BEFORE this patch. (counting unused weapons id's in the game.)

All of Cavedog's units use 165 weapon id #'s AFTER this patch.

NOTE #1:

Although the 4 antinuke weapons have VASTLY different maximum ranges, ALL the antinukes WILL shoot down nukes fired into their protected zone from beyond their maximum range. The only thing the antinuke weapon range changes is how soon the antinukes fire after the nuke is fired. The shortest-ranged antinuke weapon, CORMABM_WEAPON (Core Hedgehog's weapon) has a weapon range of 22,000 pixels -- even this could cross from one side to the other of a 40 x 40 map. (The largest non-3rd party map in TA is only 40 x 40!) Since the ranges all correspond to an incredibly huge distance, and because any of the antinuke weapons WILL shoot down nukes fired from beyond their max range, I have removed ARMSCAB_WEAPON and CORMABM_WEAPON and used the original antinuke weapons (AMD_ROCKET and FMD_ROCKET) instead on the mobile antinuke vehicles.

NOTE #2:

The missile weapon used on Arm Flakker ships (and also reused on Core's Flakker ships as well) has been modified to make them a 2-weapon unit instead of a 3-weapon unit. This was done by halving the reload time for the weapon, thus making it roughly equal to the original 2 weapons it replaces. The scripting model for the AA ships also had to be changed so the single missile weapon appeared to be firing from different turrets.

NOTE #3:

The 2 different Hawk missiles (ARMVTOL_ADVMISSILE and ARMVTOL_ADVMISSILE2) have a tiny differance in top speed (559 vs 554 -- less than a 1% differance), I removed the 2nd missile because for all practical purposes they are identical. Many things in the game are rounded down to the nearest multiple of 32 (the tilesize) and speed is probably one of them.

3rd party units don't work with Bugfix?

Some 3rd-party units may not work with this patch without changes *IF* they use weapons removed by TA Bugfix. Like if a unit used MINDGUN as a weapon. I tried not to take "sides" when deleting shared weapons id #'s. If equal numbers of units used different weapons, the oldest (as in the case of ARMRL_MISSILE) weapons id # was kept or the lowest weapons id # was kept in the case of ARM_DISINTEGRATOR.

To make these 3rd-party units work with TA Bugfix, place the old_weapons.ufo file in the totala directory. This will ADD BACK all the removed weapons with corrections to them as well. This should allow almost ANY 3rd party unit to work with TA Bugfix. (And if it doesn't please email me.)

Speed Benifit:

Another side benifit of removing all duplicate files is an increase in gamespeed - at least one speed notch. Also, the game will load a new mission faster because it shuffles through fewer files.

Because of the decrease of EMG lag as well as the removal of many categories for units, internet games and LAN games should lag less.

AI fixes:

Another bug fixed by this patch is making map OTA's use a better ai profile. Original pre-TA:CC maps were particularly bad about their choice of ai profiles that they used. This should make the ai's at least slightly more effective on those maps than originally.

Map OTA Did use Now uses

------- ------- --------

Acid Foursome Acid Default

Acid Pools Hover Wind

Checker Ponds Acid Default

Crystal Cracked SeaBattle Hover

Etorrep Glacier Default Wind

Evad River Confluence AirBattle Hover *AirBattle is strictly aircraft-only maps

Gasplant Plain Default Wind

Hundred Isles Default SeaBattle

Kill the Middle AirBattle Wind

Lava Mania Default Wind

Metal Heck Default Metal

Metal Isles Default SeaMetal

Over Crude Water AirBattle Krogoth

Ring Atoll Default Hover

Seven Islands Default SeaMetal

Shore to Shore Seabattle Hover

Show Down Default Wind

Surface Meltdown Acid Default

The Cold Place Default Wind

The Pass Default ThePass

Trout Farm Default Urban

Two Continents AirBattle Hover *AirBattle is strictly aircraft-only maps

Descriptions of AI Profile types:

(this is what they probably should be, not what they are...)

Acid.txt

 Presumes that each player is separated by acid, so ships and ground troops cannot (safely) get from one island to another. This means the ai should build aircraft and hovercraft (and Pelicans).

AirBattle.txt

 Presumes that each player is separated by impassable terrain (clouds, lava, etc) that even hovercraft cannot cross. This means the ai should only build aircraft for attack.

Default.txt

 Presumes a big land map that all units can cross. Presumeably no water is on the map, so making ships is pointless. So the ai should build everything but ships.

Hover.txt

 Presumes a water map with lots of land to build many factories on. This allows the ai to build many aircraft plants as well as hovercraft platforms. Ships aren't neglected, but have low limits.

Krogoth.txt

 For a metal map that has water as well as land. Ground troops presumeably can travel from almost any part of the map to any other part. Ships aren't neglected, but have low limits.

Metal.txt

 Strictly a metal map with little or no water and no obstructions to ground units. So the ai should build everything but ships and metal makers.

SeaBattle.txt

 Presumes a water map with limited land to build factories on. Ships are the main form of attack or defense, but small numbers of air plants and hovercraft platforms might be built.

SeaMetal.txt (Does not normally exist in the game!)

 A metal water map, presumeably with lots of land to build many factories on. This allows the ai to build many aircraft plants as well as hovercraft platforms. Ships are still a major form of attack but by no means the only one. Actually, this is just a metal form of the Hover.txt ai -- with the exception that the ai shouldn't make metal makers.

ThePass.txt (Does not normally exist in the game!)

 A special map ai, designed specifically for The Pass map. It builds very few factories or base defenses to conserve its very limited build space, nor does it build many metal extractors.

Waterwrld.txt

 Presumes an entirely water map. Ships are the only form of attack or defense, with seaplane platforms as the only other factory type. The ai should not try to build any land-based factories.

Wind.txt (Does not normally exist in the game!)

 Presumes a big land map that all units can cross. Presumeably no water is on the map, so making ships is pointless. So the ai should build everything but ships and solars. However the ai's primary early energy source is wind generators instead of solars.

Urban.txt

 Presumes a water map with lots of land to build many factories on. This allows the ai to build many aircraft plants as well as hovercraft platforms. Ships aren't neglected, but have low limits. Also, this map is low on resources but may have reclaimable objects (buildings, rocks, and trees) to make up for this lack. Also presumes there is underwater metal spots.

SIDEDATA.TDF changes:

The ai's build menus are pretty messed up:

(this is stored in the SIDEDATA.TDF file in the GAMEDATA dir.)

FIXED: Core is unable to build seaplane platforms and advanced construction subs!

FIXED: Arm's seaplane platforms sometimes quit building for no reason!

ADDED: All the TA:CC units that were missing, plus the 6 post-v3.1 patch units.

I left the ability of the ai's construction hovercraft to build advanced vehicle plants and the ability of the ai's construction seaplanes to build advanced k-bot labs in, because it is only a small advantage for the ai -- and the ai needs that (and more) to compete with good players.

Ai profile changes:

There are NO ai profiles in][BF14.ufo! TA Bugfix uses the ai profile files found in the old Rev31.gp3 file (renamed Rev31.ccx or incorporated into totala1.hpi) instead. I did not include my ai profiles (that is found on other websites) with this patch. Also, ai profiles are something that typically get changed often like maps do - which is much easier to do if the ai files are in an AI directory instead of buried inside of a ufo file.

Single-player Mission changes:

Some single-player maps have been altered so they can be used as multiplayer maps as well, HOWEVER they *MUST* be installed to the harddrive in order to run (the big totala4.hpi file, that is).

Also, a small and currently incomplete Arm campaign has been added as well. It takes place at about the same time as the missions in TA and TA:CC.

The missions will play better if ai profiles are added to augment them! The special ai profiles they use are:

SeaMMiss.txt for Sea Metal maps

Sea_Miss.txt for Sea maps

The Krogoth Campaign has been altered so the original hard setting is now only the medium setting. The new hard setting adds only 1 enemy unit to the ai and removes much of the waittimes placed on the enemy units. This makes the ai attack earlier and with greater strength, and resupplies its attack force quicker. I personally have beaten it, but it is very hard. For those that find either version too much, an easy version has been added as well - but even it is no cakewalk.

There is a major (in my opinion!) mission bug in every mission included in TA:

The ai will not automatically build MOST TA units added after the very first v1.0 release! Strangely, there are a handful of units that don't have this problem. These are:

armscorp, cormabm, cornecro, corplas, corscorp, cortruck

Probably can be built by the ai as well:

armscab, armss, armgate, corgate, corbuild (but only the ai would be able to build it!), and both the arm and core beac and dev1.

NOTE: Normally most of these units aren't buildable, but once a download tdf file is added to build them the ai WILL build them!

I am hard at work to make it so the ai can autobuild *ANY* units in TA in missions, even if they're 3rd party units. This is *IF* the ai is allowed to build them at all. (via the useonly files.) So, if the unit is grayed out the ai cannot build it.

Minor Map changes:

I moved around a few of the starting locations on some maps because of conflicts -- either the commander starts out "stuck" on/in the scenery, or starts very close to other commanders.

I did this on these maps:

Painted Desert (w/ more than a 4 player start, players 1 and 5 were close together. Player 5 is now located in the center.)

Town and Country (one player starts out embedded in a car)

Evad River Confluence (tidal strength has been increased from 0 to 15 -- this is supposedly a river isn't it?)

New control options!

These new CTRL hotkey shortcuts are designed to eliminate some of the micromanagement in controlling all your units:

CTRL+G - ground units (armed ground units only)

CTRL+H - hovercraft (armed hovercraft only) (Hovercraft are *NOT* selected with CTRL+G)

CTRL+L - Laser towers + other fixed defenses (but not AA towers!)

CTRL+N - Naval units (armed ships only)

CTRL+Q - AA towers (Missile Towers, Flakkers, Naval Missile Towers)

CTRL+T - Torpedo Launchers (fixed versions only)

CTRL+X - superweapons such as antinukes, nuke silos, and berthas (LRPC's)

NOTE: Pelicans are selecetable with both CTRL+G and CTRL+H.

NOTE: The crawling bombs cannot be selected with CTRL+G, because their "weapon" is their death.

NOTE: Decoy commanders are not selectable with either CTRL+G or CTRL+W, but are selectable with CTRL+B.

NOTE: Minelayers, Arm FARK, and Core Necro are selectable with CTRL+B.

The "X" key is now a hotkey shortcut for nuke silos and antinuke silos build menus. It will repeat the last mouse build command for that silo - to either build 1 missile or to remove 1 missile from the build que. It can be used with the shift key to build/remove 5 missiles at a time - hold down shift+"X" to queue up many missiles quickly.

The Arm Annihilator and Core Doomsday Machine now have an On/Off switch. When set to "Off", the turrets act as normal - opening as neccessary when an enemy comes into range. When set to "On", the turret remains in an always open state. Changing from "On" to "Off" causes the turret to immediately begin its close-up sequence regardless of what the turret is doing. The turrets need to be set to "HOLD FIRE" to remain closed and "OFF".

(Sadly, we're still having problems with the Annihilator and the Doomsday Machine -- when set to "OFF" and fire at will and something comes into range, they turn themselves "ON" and remain "ON".

Also added to the Core Doomsday Machine is the "D-Gun" option. This does NOT fire a D-gun but instead fires the Core Doomsday Machine's 3rd weapon -- its red (LLT) laser. By using "Attack" in combination with the "D" key (using shift), the DDM can fire at multiple targets at once using different weapons on each.

The Core Krogoth also has the "D-Gun" option to fire its 3rd weapon, its arm-mounted Gauss Guns.

Category changes in unit FBI files:

Morty is now treated as a LEVEL2 unit in its FBI file.

Both the Arm Samson and Core Slasher are now LEVEL1 units -- not LEVEL2 like they were.

Thuds can no longer be selected with CTRL+P.

Most/all units have ALTERED category information in their FBI.

Any units with radar, sonar, or jamming ability are now selectable with CTRL+R.

The Targetting Facility can now be selected with CTRL+R.

ALL Underwater units now have the UNDERWATER category in their FBI.

These categories have been totally removed:

ANTISUB, BEACON, BOMB, CARRY, defensive, DEV, extractor, HOVER, JAM, KAMIKAZE, KBOT, LEVEL, LEVEL10, MINE, MINELAYER, PARAL, PHIB, RAD, REPAIRPAD, SCORP, SHIP, SONAR, SPECIAL, SPY, STEALTH, STORAGE, strategic, TANK, TPORT, VTOL

Although this seems excessive, the categories tell the ai what category each unit is in. Since this information was not used by the ai (or did not appear to be used), it was removed.

These categories have been added: CTRL_G, CTRL_H, CTRL_L, CTRL_N, CTRL_Q, CTRL_T, CTRL_X, NOTSTRUCTURE

CONSTR and PLANT were added back because ai profiles DESPERATELY needs this information!

TORP now takes the place of ANTISUB

CTRL_H now takes the place of HOVER

CTRL_G now takes the place of KBOT -- selects all ground units with weapons

CTRL_G now takes the place of TANK -- selects all ground units with weapons

CTRL_L now takes the place of DEFENSIVE -- selects all Laser towers + other fixed defenses

CTRL_M now takes the place of MINE

CTRL_N now takes the place of SHIP -- selects all naval ships with weapons

CTRL_Q now takes the place of SPECIAL -- selects all AA towers

CTRL_R now takes the place of JAM

CTRL_R now takes the place of RAD

CTRL_R now takes the place of SONAR

CTRL_T now takes the place of TORP -- selects torpedo launchers

CTRL_V now takes the place of VTOL

CTRL_X now takes the place of strategic -- and selects antinukes, nuke silos, and bertha weapons.

Because the remaining categories make decent substitutions, the originals are not needed.

Units ai behavior is improved with appropriate badtarget lines in their FBI.

Both Light Carriers have an added "ENERGY" line in their categories in their FBI file.

The Geothermal Plant, Energy Storage, Underwater Energy Storage, Fusion Reactor, and Underwater Fusion Reactor have an added "METAL" line in their categories in their FBI file. Although this is incorrect, it should encourage the ai to build them more often and will have no effect on the player. Also, the Moho Metal Makers no longer have the "METAL" line in their categories in their FBI file. This is to partially overcome the ai's tendancy to build moho metal makers when it has nothing but solars to power it and will also have no effect on the player.

Core Slinger (CORAH) had BadTargetCategory=VTOL;

Arm Swatter (ARMAH) had BadTargetCategory=VTOL;

even though they're ANTI-Aircraft hovercraft!

Core Thunderbolt, Floating Heavy Laser Tower (CORFHLT) had BadTargetCategory=NOTAIR;

but it's HARDLY an AA weapon!

Core Shadow (CORSHAD) had NoChaseCategory=UNDERWATER;

but it's very unlikely that it'd ever find an underwater target to chase in the first place.

(All bombers have this line!)

Note that +SHOOTALL overrides the bad target settings, allowing units to autotarget resources and the like.

Also, bad target setting have been changed so units don't shoot at c-units and factories by default.

The BadTargetCategory= line seems to be "overall" for *ALL* the weapons on the unit. (But is sometimes ignored!)

The NoChaseCategory= line seems to be for whether the unit will chase a unit it's told to attack if it moves out of range.

The wpri_BadTargetCategory= line seems to disallow the FIRST weapon of that unit from targetting certain enemy types. It is the GREATEST deciding factor on what the unit will target quickly and what it will ignore if other units are around.

For missile weapons with AA uses, what seemed to work best was:

wpri_BadTargetCategory=NOTAIR;

BadTargetCategory=NOWEAPON;

This means firstly, it would ignore units not flying (NOTAIR) and out of the flying units it would prefer units with weapons. The other way around made them too likely to shoot at anything with a weapon -- whether it was flying or not!

COB script file changes:

The Core Spy no longer "runs" while being built.

Both sides' Construction Kbots (both Basic and Advanced), Core Necro, and Arm FARK should almost never have guarding and building problems now.

Almost *ALL* buildings that close when damaged were not becoming armored when closed - DESPITE having a damage modifier line in their FBI file that says that they should be! This happens to the Arm Annihilator, Arm Advanced Radar (although it lacks a damagemodifier line, since it's closed it should be slightly tougher - so I added a damamgemodifier of 0.5, this will have little effect because it is so fragile), the Core Doomsday Machine, the Moho Metal Makers, both side's Targeting Facilities, and both side's antinukes were *NOT* more resistant to damage while in a closed state. Antinuke silos are fragile and easy to kill because of this bug. THIS has been fixed!

To make matters worse about this failure to armor bug, the Arm Advanced Radar, both side's solars, both side's sonars, and both side's moho metal makers incorrectly OPEN and activate when shot -- even when not COMPLETELY BUILT! This makes them easier to kill. This has been fixed as well.

The Core Viper pop-up HLT had a scripting error that caused it to not leave a corpse, this has been corrected. The corpse metal value has also been reduced to less than the metal cost of the Viper.

A few multi-weapon units have an either-or approach to using their weapon. The Arm Warrior for instance will fire either its cannon OR its EMG but seldom both.

The fixed Arm Warrior attempts to use both weapons at once, if in range. Even with the original unit, this could be done by using "Hold Position" and "Fire at Will" and ordering the Warrior to move near an enemy instead of ordering it to attack the enemy - this fix just removes the micromanagement involved. This was done with a COB fix.

Both side's Flakker ships have lost their second missile weapon, leaving them with 2 weapons -

weapon 1: their first missile weapon

weapon 3: their flakker weapon

The flakker weapon had to be made weapon 3 instead of weapon 2, or it would be force-fireable (which would make it able to destroy almost any unit not strictly immune very quickly.)

This means the flakker ships should shoot their flakkers more often. This was done with a COB fix and an FBI change. The reload time on the remaining missile weapon used on Arm Flakker ships (and also reused on Core's Flakker ships as well) has been halved, thus making it roughly equal to the 2 original missile weapons it replaces.

The Core amphibious K-Bot, the Gimp, should now use both of its weapons at the same time. Just like the Arm Warrior, the Gimp could use both of its weapons at once - but only if not ordered to attack a specific target. This should help make the Core Gimp more effective against the Arm Pelican without requiring changes on either of their stats. This was done with a COB fix.

The Arm Maverick and Arm Zeus will now take considerably longer (about 10 seconds) to put their guns away -- this will decrease the likelyhood that they are "disarmed" during intermittent fighting.

The Core Battleship's laser turret animation has been corrected so the 3rd barrel rotates into position.

The Arm Wind Generator's blades have now been changed to spin in opposite direction from the originals. This better matches the wind direction as seen by which way smoke blows.

The Arm Jethro, Arm Pelican, Arm Phalanx, Arm Samson, Core Copperhead, and Core Slasher have modified unit COB scripts to make them less likely to ignore enemy aicraft flying past them.

The Arm and Core Scorpion has a simplified COB script.

Almost all Hovercraft have modified unit COB scripts, so they won't leave blocking wreckage in the water. Instead, they will leave passable wreckage. While on land, they can still leave blocking wreckage. SOME of the hovercraft scripts also have corrected explosions.

Arm Stunner EMP silo and Core Nuke silo both have a COB script modification to prevent the problem the ai has when using this silo. Previously when the ai used these launchers, conditions could occur which caused the missile to explode inside the silo instead of launching!

If I included a COB file in TA Bugfix, it definitely makes some changes over the original -- with the exceptions of the 6 extra Cavedog units, their COBs were needed to work.

Core Necro changes:

Changes made from the original Necro:

1.Name change from "Ressurrection Kbot" to "Necro".

2.Added builddistance=30; to the necro.tdf file, so it doesn't have to be touching units and wreckage to repair them.

3.Removed bogus attack button information in the necro.tdf file.

4.Fixed necro's unit script so that the guard factory bug (where the necro gets "STUCK" repairing units built by the plant even after they've left the plant) happens less frequently. (Total elimination of this bug is nearly impossible though, because what triggers the bug seems to be the interaction of many scripts at once: factory, necro, and unit being built.) This bug *ALSO* affects any repetitious nanolathe animations, even back-to-back ressurrections that don't require movement.

Why I made these changes to the Necro:

1.The Necro, which was obviously found and released as it, has the bug of not even being called the Necro.

2.The Necro could not reliably repair units because of a missing "builddistance=###;" in its cornecro.fbi file. Any number between 20 and 100 could be used for builddistance, but I chose 30 after talking with Boneyards sysops about how the Core Necro affects game balance. If I gave it a value of 60, like the Arm FARK, it could be abused by making it possible to guard a single adv. air plant with 10 or more Necros!

3.And to further confuse matters, the Necro has bogus attack information in its cornecro.fbi file!

4.The Core Necro has the same build/assist scripting problems as the Core Adv. C-Kbot -- which means other than the Decoy Commander (which is a very weak construction unit) Core does not have a reliable construction unit that is built by its Advanced K-Bot lab.

The results of these changes:

With a too-large builddistance, the Necro would be able to do everything the Arm FARK could AND ressurrect units as well! I tried to avoid this by making the Necro's builddistance tiny -- even shorter than most Level 1 construction units (which normally have a builddistance of 40.)

Core's Necro is still only a so-so Arm FARK counter. Although it costs less metal than the FARK, it costs 3 times as much energy, is built 40% slower, has far less armor (paper thin, in fact), doesn't make any resources (the FARK makes +0.5m/s and +17e/s), would assist factories at a slower rate than the FARK, cannot be used to MASS-assist a single factory like the FARK can, and has a considerably slower top speed. But at least with this fix, it can ressurect and repair correctly unlike the original. And if you don't have any wreckage around to rez, it can even reclaim rocks and trees (while on Patrol) and repair already-living units (while on Patrol or ordered to repair) -- which is something it previously had great trouble doing! Only 1-3 Necros can get close enough to a single factory to assist in building mobile units, and then they often block the factory's exit. After all these changes, the Necro goes from being a micromanagement pain to use (because it was always failing to complete orders and would sit idle) to easy and FUN to use. This gives Core a workable but LESSER counter for the Arm FARK. (in my opinion)

Antinuke silo changes:

I've added a weapons line "toaironly=1;" to the antinuke missiles for the Arm Protector and Scarab and Core FMD and Hedgehog so that they will not open and attempt to shoot at anything other than aircraft that hit them. This negated their 0.5 damage modifier they gained for being closed and made them TWICE as easy to destroy. Sadly, they still open stupidly when aircraft shoot them - but I could find no weapons-modifying line that could tell them to ignore attacks by aircraft. So I settled for the partial fix instead of none at all. I also made it so antinuke silos should only stay open for 10 seconds after firing a missile. This keeps the "window of opportunity" to destroy them while they're open and more vulnerable reasonably small without interfering with their standard operations.

Originally, if the Core Antinuke silo (CORFMD) is ever nuke-flooded -- and the silo survives -- the silo locks up and refuses to ever fire at nuke missiles again even if it has missiles in it.

BEFORE my changes, ALL antinuke silos can temporarily overload and quit firing if 5 or more nukes are fired at them at once. (This is what "nuke-flooded" means.) Once ALL nukes have impacted or are shot down, they might resume firing. The antinuke's animation scripts cannot keep up with how fast the antinuke fires, causing the antinuke to refuse to fire until there are no more incoming nukes and resets its variables. A "workaround" for the problem is to put the antinuke on hold fire, resetting its script, then back on fire at will -- which should cause it to resume firing.

To get the antinuke silo's animations to match their actions, I had to slow down their rate-of-fire slightly and both speed up and simplify their animations, especially for Arm's antinuke.

Arm's antinuke silo's rotary launcher was much too slow for the rate-of-fire needed in the event of a nuke-flood, and did not match its apparent rate-of-fire. Originally, it ignored the position of the rotary launcher and fired multiple antinukes almost instantaneously, while the rotary launcher would continue to rotate erratically -- sometimes even reversing direction! Now, Arm's antinuke silo loads 3 antinuke missiles on 3 separate launch rails (in a triangular configuration) and has to close and rearm after every 3 shots. It does this quickly enough to seldom cause problems.

Core's antinuke silo has to close and rearm after EVERY shot, but it rearms faster than Arm's antinuke silo so both should be balanced yet still retain originality.

The mobile antinukes needed only a firerate reduction to remove most of their problems.

After all the antinuke changes, the fixed antinuke silos can fire slightly quicker than their mobile counterparts. This should make fixed antinukes worthwhile versis their mobile counterparts which cost the same.

Arm Stunner EMP silo changes:

The Arm EMP Silo's paralyzation was changed so ANY units not mentioned in its weapon damage file are affected by it - previously, they were immune. This will affect almost all 3rd party units and any new Core and Arm units not specifically mentioned as immune in the damage lists. Unless many 3rd party units are used, this should have little effect on gameplay. I didn't do the same to the Core Neutron Silo because it affects only Arm mobile units - not ALL of Arm's units. Having the Neutron damage ALL 3rd party units would be imbalancing.

Krogoth changes:

Krogoth Duplication Bug:

When a healthy vetran krogoth is captured, self-d'ed, or traded, the krogoth (being captured, self-d'ed, or traded) has 30,000 damage done to it which is LESS than its total health. So the original krogoth (that was captured, self-d'ed, or traded) lives, barely; and a NEW healthy duplicate is created as well. By repeating this cheat, krogoths can be created for free! This fix reduces the krogoth's health to half (to 14,959 which is half of 29,918) and adds a damagemodifier=0.5; line in its FBI file, which makes the krogoth have 1/2 the health but take 1/2 damage all the time. A COB file fix was also needed which set the Krogoth to the always armored state.

When the modified krogoth is captured, self-d'ed, or traded the 30,000 damage ignores the damagemodifier=0.5; in its FBI file. So, the original is removed when the copy is created. This prevents the appearance of extra, but badly damaged, krogoths. One small but extra benifit is Krogoths will be repairable at double their original rate - so it'll take a construction aircraft about 5 minutes to repair a badly damaged krogoth instead of 10 minutes.

Also to maximize the krogoth's damage potential in combat, its 3 weapons have been moved around. Since the krogoth tends to use its primary weapon over its secondary weapons, it makes good sense to make its primary weapon one it can use in MOST situations.

The weapons are swaped around to:

Weapon1=CORKROG_HEAD;

Weapon2=CORKROG_ROCKET;

Weapon3=CORKROG_FIRE;

The bad target categories are changed to:

wpri_BadTargetCategory=LEVEL1;

wsec_BadTargetCategory=NOTAIR;

wspe_BadTargetCategory=CTRL_V;

BadTargetCategory=NOWEAPON;

NoChaseCategory=CTRL_V;

The weapons will still fire at bad targets, but only if ordered or if there are no other targets available.

Also added to the Krogoth is the "D-Gun" option. This does NOT fire a D-gun but instead fires the Krogoth's Gauss guns on its arms. When "Attack" is used in conjuction with the "D-Gun" option (via the shift key), the Krogoth will fire all its weapons at once -- possibly even at different targets! When using "Attack" alone, the Krogoth will only try to get within range of its head-mounted Blue Laser (700 pixel range) from the target.

The Krogoth can now be selected to built in the Krogoth Gantry using the "K" key when the Gantry is selected and the Krogoth is showing on the menu. Page 3 of the Krogoth Gantry also has a LARGE Krogoth build pic. It is linked to the normal Krogoth build pic on page 2, so clicking on one is the same as clicking on the other.

Landmines Changes:

Minelayers are now selectable with CTRL+B (as Constructors) and now have patrol, guard, and reclaim abilities! They are still considerably slower than C-vehicles, nearly as costly, do not make resources on their own, plus they have only landmines on their build menu - but now at least they can clean up the messes their minefields can make!

Landmines can now all have their fire orders changed to HOLD FIRE, RETURN FIRE, and FIRE AT WILL. Why a player would want to is questionable, but since they qualify as a weapon - it makes sense that they have a "safety" feature too. The Nuclear Mines default to HOLD FIRE, but all others default to FIRE AT WILL. While a landmine is set on Hold Fire, it can be manually detonated for maximum damage effect. Or, landmines can be used as cloaked spotters. (Their poor LOS range, cloaking cost, and lack of armor makes landmines poor spotters.)

Originally, landmines were only resistant to damage caused by landmines of the exact same kind. This has been changed so that all landmines of one side are resistant to other mine's damages of the same side. The only exception is the nuclear mine's explosion which kills ALL landmines nearby -- and just about everything else too! Arm mines affect Core mines and vice-versa just fine. This is done to encourage the use of dissimilar mine types in a tightly packed minefield.

Previously, the Arm Precision Mine (ARMMINE5) had 2,000 armor while ALL other mines had only 100 or 200 armor. Because the mine is extremely tough for such a cheap price (which is unbalanced), I presume an extra unintended 0 was inadvertently put there. The armor has been reduced to 200 -- still TWICE as much as all other Arm mines. (Sorry Arm players, there goes your "killer" strat.)

Both side's Nuclear Mines can now be built underwater. However, since the minelayers can drive only into shallow water, a naval construction unit is required to build them in deep water. So, Nuclear Mines have been added to the Advanced Construction Sub's build menu. (Page 3, position 5) This should be useful as a naval defense against Fibbed subs and Leviathans, which previously lacked good counters. Nuclear Mines have a tiny LOS radius, no sonar, damage both friendly and enemy units, are one-shots, and cost a considerable amount of resources -- making this change difficult to abuse.

LRPC Changes:

All the LRPC's (Arm Big Bertha, Arm Vulcan, Core Buzzsaw, Core Intimidator) have been modified so the direction they point when built isn't always straight down. Now, they can be pointed to the left, down, or to the right. I tried making them so they could point up also, but something caused them to be unable to fire when they were built facing up.

I added an On/Off switch to the Arm Vulcan. Consider it a single-shot/full auto fire switch. While On, the Vulcan fires at its normal superfast drain-your-energy-dry rate. While Off, the Vulcan fires at the same rate as an Arm Bertha -- making it likely to be mistaken as one by its rate-of-fire and its sound. It also doesn't require 8+ fusions to sustain fire when firing while Off.

The Core Buzzsaw doesn't get this On/Off feature because I couldn't get its unit script to work with it. Plus, it costs almost 10,000 metal cheaper than the Arm Vulcan so it's "balanced" not for it to get this minor ability.

Bugfix for the Arm Pelican:

Despite the many and much heated debates about the Pelican being too powerful in TA, I still prefer to think of the Pelican (and Flash as well, but that's a different story) as a legitimate unit in TA. However, missiles aimed at the pelican when it is on the water tend to hit the water instead of the Pelican unless fired from nearly point-blank range. This is a bug or is at least unintentional on the designers part. All ships are targetted correctly by missiles, SO if pelicans are in fact meant to be a ship (but then why the Floater=0; line? -- all ships have a Floater=1; line!), subs should be able to target them. However, subs cannot target them. (But subs can force-fire past them, hitting the Pelicans. The same trick can be done to all Hovers.) Pelicans also have a canhover=1; line which ALL other hovercraft have as well - which proves that Pelicans are hovercraft and not ships. Pelicans currently use waterline=9; which is ODD because all hovercraft lack a waterline=9; in their unit FBI file -- which due to its absence defaults to 0. So obviously, part of the Pelican is hiding below the waterline -- which is where missiles are aiming in their attempt to hit them. However 1 other fact remains which causes the behavoir of even partially underwater Pelicans to not make any sense: Pelicans take NO DAMAGE from acid on acid maps! As such, there is a simple fix for the WHOLE problem: set the pelican's waterline to 0 so it isn't partially underwater.

Pelicans may appear to be hovering over the water with this fix when viewed at 640 x 480. I couldn't tell any differance myself except that missiles hit the modified Pelicans more reliably. HOWEVER, any missiles fired from near or at max range that might miss an ordinary hovercraft could well miss the Pelican as well. This change does nothing else to the Pelican's unit stats, nor does it change how any other weapon is fired at them. It only allows missiles and direct-fire rockets to hit Pelicans as they would any ship or hovercraft in the same conditions.

Bugfix for ALL Hovercraft:

(This idea was taken straight from BSR's UH.)

Hovercraft leave passabled debris when destroyed on the water. (That is IF they leave debris!) The debris created is also left on land IF the hovercraft is badly destroyed. The debris is roughly half as valuable and half as tough as the "shell" wreckage is.

Arm Anaconda's corpse has been increased in value from 105metal to 205metal -- this is a probable typo, because Core's equivalent hovercraft, the Core Snapper, has a corpse value of 224metal! Normally, corpses are worth roughly 60-80% the metal value of the unit it came from -- but this corpse originally was only worth 38.6% the value of the original Arm Anaconda.

This required a new COB script for every hovercraft in TA, as well as changes to the 4 corpse files.

Bugfix for Naval Defensive Structures:

Both side's floating HLT's and Core's floating missile tower's waterlines have been changed from 3 and 4 respectively to 0.3 -- this will allow them to better shoot over naval dragon's teeth while still allowing subs to target them. It will also allow guided missiles targetted at them to hit them from a longer range, previously the missiles would hit the water like the Pelican bug (see above).

Bugfix for the Naval Dragons Teeth:

Naval Dragons Teeth are made to sit deeper in the water to allow naval HLT's and missile towers to shoot over them. Originally, naval HLT's and missile towers could not do so reliably -- which makes countering Pelicans all the more difficult! This would also act as slightly better torpedo netting against subs.

Bugfix for the Arm Penetrator:

Originally, Penetrators could recenter their turret quicker than the turret turns to aim! It's also the slowest-turning turret in the game. Why not aim the turret as fast as it can recenter in the first place? It won't be around to recenter if it can't acquire the target! So, the Penetrator's turret has been changed to a faster-turning (but still slow) turret with the same turret speed as its larger counterpart, the Arm Annihilator. The Penetrator's weapon lacks the range and damage of the Arm Annihilator and costs nearly as much energy to fire -- these characteristics I have not changed.

EMG weapon changes:

I edited the Flash tank's, Brawler's, and Warrior's EMG weapons to not make any impact noise (soundhit=; in their weapon file) -- this should decrease lag caused by these weapons immensely. However, you should still hear them firing *JUST* fine.

I changed their sound behavior with:

soundtrigger=0;

which makes only 1 firing sound per burst of shots.

An altered sound file was made which plays the sound of an entire burst of shots as a single wave.

In the 3 EMG weapons (Flash/PW, Brawler, Warrior) files, I replaced:

 startsmoke=1;

WITH:

 startsmoke=0;

 endsmoke=0;

Those tiny smoke puffs were very hard to see on 640 x 480 - on anything higher, nearly impossible.

Also, I removed the wave for weapon impact (changing it to):

 soundhit=;

All the impacting pictures for EMG have been removed as well, they were also a major source of lag. Unfortunately, the impact smoke animation is still visible -- that can only be removed by using +SFX while ingame.

That is all I have done for the lag on emg units.

Core Pyro changes:

I removed the wave for weapon impact (changing it to):

 soundhit=;

These shoot 17 times every 1.2 seconds - which in theory would make them a bigger lag-producer than EMG weapons!

This has been changed to firing a burst of 5 shots over almost exactly the same time period (0.7 sec instead of 0.68 sec) and doing the same total damage of 170 as the orginal to all units but pyros, but doing 1 extra point of damage to them for the whole burst - 35 damage instead of 34 like the original.

Crawling Bomb changes:

Crawling bombs have their self-d countdown reduced to 2, the same as landmines. This will *NOT* speed up the countdown of a flying bomb so it should have little effect on the game. This allows crawling bombs on the ground to be a slightly more viable tactic without changing a variety of their statistics. Just as before, a crawling bomb can be told to attack the ground just in front of it to cause an instant explosion without the 2 (or 5) second self-d delay!

Arm Fibber changes:

Not much else can be done about the Arm Fibber, it's just one unfair unit because of the way sonar jamming works. Sonar jamming gives the equivalent to underwater cloaking on ALL units within the jamming radius, and in the case of the Fibber this costs NO energy! (Even mincloakdistance=100; does not negate this cloaking-like effect.) The ONLY change done to the Arm Fibber is if the Fibber somehow takes damage, its sonar jamming effect is temporarily disabled for about 5 seconds. This is no different than a radar that turns off briefly when hit, and should help slightly in "Fibber war" games.

Core Leviathan Super-Sub changes:

SoundCategory=ARM_SUB;

has been changed to:

SoundCategory=CORE_SUB;

since it is after all a *CORE* sub!

It turns out that this sub partially sticks up out of the water if it moves into water that's too shallow. This will not be changed, and should be good reason to keep your Leviathan subs in DEEP water!

Cruiser and Destroyer Changes:

On ALL ships with Depth-Charge, (This is the Arm and Core Cruisers and Destroyers -- 4 ships in all) the depth-charge weapon has been moved from weapon 2 to weapon 3. This will allow these ships to hold position and fire their guns at range when told to attack a distant target, without them attempting to move within depth-charge range. The depth-charge will still automatically shoot at subs in range, but can also be manually targetted at legitimate targets. Unfortunately, Fire at Will *AND* +shootall has to be activated before they will shoot at weaponless underwater buildings. This is how it's always been, so there's no real change except Destroyers and Cruisers will no longer "charge" the shore trying to get in depth-charge range of inland targets.

Missile Frigate Changes:

These units have less than 1/3 the armor of the cheaper cruisers made by the same factory, yet prove less useful in almost every case. The only semi-useful task they can perform is base bombardment, but because they are terribly slow, unmanueverable, and poorly armored the only base they're likely to bombard is your own when they attempt to shoot down enemy aircraft with their heavy rockets.

To combat the lack of armor, I did not change the ship's armor stat but rather looked at the ship's design. Because the heavy rocket launcher occupies about 1/2 the ship's length, I gave the missile frigates a 1/2 damage modifier when it is closed and not exposing the ship's innards and live heavy rockets on the launcher. This makes them just over half as tough as a cruiser when closed.

To combat the friendly fire problems caused by the heavy rockets, I added an On/Off switch to these ships which controls whether or not the heavy rockets will fire. On Core's Missile Frigate, this also has the unfortunate effect of turning off its radar, so I made the radar quit spinning while off as well. While set to the "Off" state, the missile frigates will still fire their AA missiles at enemies if any are in range.

Advanced bomber changes:

All the impacting pictures for the advanced bombers laser have been removed, they were a major source of lag when 10+ advanced bombers attacked at once.

Anti-Aircraft missiles changed:

Despite the obvious problem of all anti-aircraft missiles not doing extra damage to all aircraft, especially 3rd party ones, this is not really a bug. The Seaplanes found in TA:CC are an example of how Cavedog tried to work around this problem. They take less damage from anti-aircraft missiles than other Cavedog aircaft, but they have less health so it averages out. The problem is, it looks like Cavedog intended to add them to the special damage lists (and added them to the stealth fighters' missiles) but not to anything else. This is incredibly imbalancing because stealth fighters can destroy them easily - often with only 1 missile hit, while they need 4 to 5 hits to kill 1 stealth. However, they still have a weakness to flakker weapons which do full damage to them. All other weapon types kill them easier too.

I removed the special damage lines for ARMSEAP, ARMSFIG, ARMSEHAK, CORHUNT, CORSEAP, CORSFIG on these weapons:

ARMVTOL_ADVMISSILE
(ID=112)

CORVTOL_ADVMISSILE
(ID=113)

CORAH_WEAPON

(ID=199)

Flakker changes:

It's been pointed out that flakkers are often as dangerous TO your base as it is to enemy aircraft. As a fix, I'm adding a "unitsonly=1;" line to all flakker weapons. This will prevent the flakker weapon from detonating when it hits the ground or when it hits DT. Zero-damage lines have also been added to the tall buildings that were typically affected by the flakkers - now if for some reason the flakkers do hit them, the damage the buildings take is zero. The flakker weapon names and weapon id numbers are:

ARMFLAK_GUN

ID=42

CORFLAK_GUN

ID=43

ARMyork_GUN

ID=116

CORSENT_GUN

ID=133

(Note: The other flakker weapons in the game have been absorbed into the above 4 weapons, so all flakkers used in the game are affected by this change.)

This may not be considered a bug, but is a big game balance issue - because what's the point of making an anti-aircraft weapon that destroys your base when it misses? This is like an antinuke that nukes your base if it misses an incomming nuke!

Zero-tolerance bug:

MANY units in the game have a terrible target-tracking problem because of an overprecise TOLERANCE=###; line in their weapons file. More specifically, for many original TA units (but not for any of the downloadable add-on units) there is no TOLERANCE=###; line at all! This means the turret/torso of the unit had to be precisely aimed on the center of the target before it would fire its weapon. A good example of this is the commanders' lasers, Arm Zeus, or Core AK. They would track a target but seldom fire at it if the target moved by them quickly. I would NOT have considered this a bug, except for the fact that Cavedog has included a TOLERANCE=###; line for all but 1 of the downloadable units released AFTER the original game came out. I added a low tolerance to all the tolerance-lacking weapons.

Weapons Changes:

COMMANDER_BLAST has been altered to be a nuclear missile weapon that has a 5 minute buildtime with a massive cost - 2x the metal and 3x the energy as the regular nuke weapon. This will have NO effect on the game, but allows for the design of 3rd party units with this "new" oddball weapon.

CRAWL_BLAST has been altered to be a medium-ranged mini nuclear missile weapon with a cost slightly greater than the Arm Stunner missile weapon. This will have NO effect on the game, but allows for the design of 3rd party units with this "new" oddball weapon.

ARM_DISINTEGRATOR will no longer start fires (firestarter=0;) -- the D-gun should destroy trees, not burn them!

Both the COMMANDER_BLAST and the CRAWL_BLAST have been set so they will destroy trees (firestarter=0;) instead of setting them on fire. This will make the Crawling Bombs good for clearing trees -- and almost nothing should survive a commander explosion!

5 explosion weapons have been turned into true weapons:

 Weapon Area of Cost Reload

ID Name Range Damage Effect Metal Energy Path Time

--
Special note
Used by:

BEFORE:

37 CORMINE3(M-303) 480 700(45) 160 - - B 3.6 10% edge effect
Core Mine #3

110 MEDIUM_UNIT 480 250 95 - - B 3.6

Medium Unit self-d

185 ARMMINE2(Area) 480 600(30) 200 - - B 3.6 5% edge effect
Arm Mine #2

204 SMALL_UNIT 480 200 75 - - B 3.6

Small Unit self-d

207 MEDIUM_BUILDINGEX 480 100 105 - - B 3.6

Medium Building explosion

213 COMMANDER_BLAST 380 9999 950 - - B 3.6 75% edge effect
Commander explosion

214 CRAWL_BLAST 480 2500 556 - - B 3.6

Crawling Bomb self-d

AFTER:

37 CORMINE3(M-303) 780 700(45) 160 - - L 6.48 10% edge effect
TAWF010b_weapon

110 MEDIUM_UNIT 2400 250 95 - - L 2

Dragon

185 ARMMINE2(Area) 2100 600(30) 200 - - L 10 5% edge effect
ADVSAM

204 SMALL_UNIT 850 200 75 - - B 2.8

ARM_MORTAR

207 MEDIUM_BUILDINGEX 600 100 105 - - L 1

dart

213 COMMANDER_BLAST 32700 9999 950 6000 600000 V 300 75% edge effect
Super-nuke?

214 CRAWL_BLAST 4000 2500 556 1300 52000 V 130

Medium-range Mini-nukes?

(V= Vertical Launch)

These weapons will still retain their original ability as explosions, but can also be used as weapons on 3rd party units.

ADDED 3do and sound files:

[ARM_MORTAR]

model=mortarshell;

soundstart=Mortar1;

[Dragon]

model=Dragon_miss;

[ADVSAM]

model=ADVSAM;

soundstart=launch;

[dart]

model=dart;

[TAWF010b_weapon]

model=rpack;

soundstart=shoot;

[CRAWL_BLAST]

model=advmiss;

After I add the appropriate sounds and 3do files to TA Bugfix, everything needed to use these weapons has been included.

Admittedly, it may seem a little strange for a unit to fire SMALL_UNIT, MEDIUM_UNIT, MEDIUM_BUILDINGEX, ARMMINE2, or CORMINE3. But confusion is the price to pay for saving 7 weapons id's.

The 7 weapons conversions plus extra 3do and sound files adds less than 100kb to the total filesize.

Accumulating scars bug:

After many hours of battling on a map, many of the map features are either removed or destroyed - such as trees or recycleable rocks - leaving behind a "damaged terrain" scar. This is also true of dead units and dragon's teeth which are recycled. The accumulation of many of these scars causes some slowdown in the game. In the case of dragon's teeth, the slowdown could well be excessive - plus revealing where dragon's teeth walls once were to all players. Currently, I've left the other scars but removed the "dead" dragon teeth scars.

Also, it was strange that although there is no way to destroy a scar - the scar has a scar corpse as well! This unneccessary scar corpse has been removed. ALL the remaining scars do NOT have a corpse.

Corpse Changes:

All corpses and heaps (in alphabetical order by unit abbreviation) are in 4 master files (Arm corpses, Arm heaps, Core corpses, Core heaps) -- this would also aid in discovering unit conflicts. The other files are of zero-length to force TA to forget all the incorrect and redundant entries in ccdata.ccx and totala1.hpi.

FIXED: The Core Fortitude Missile Defense (CORFMD) incorrectly uses Arm's Anti Missile Defense's (AMD's) corpse (armamd_dead) instead of its own corpse (corfmd_dead) which is in TA. This isn't too big a deal, unless you're using ressurrector units - in which case corpses don't always turn back into the unit that they came from!

FIXED: The Core Goliath (CORGOL) uses the Core Diplomat's (corvroc_dead) corpse. This was why previously a dead goliath was worth less metal than a dead Reaper! This has been replaced by the considerably more valuable goliath corpse (corgol_dead), which is also in the game.

FIXED: The Arm Retaliator nuke silo's corpse was worth almost 2,000 more metal than it cost to build the silo. This has been change to about 800 metal -- roughly the same value as Core's nuke silo's corpse.

FIXED: The Arm Seer (ARMSEER) and the Core Informer (CORVRAD) used the same corpse as the Arm Jammer, this has been changed to ARMSEER's corpse and CORVRAD's corpse, respectfully.

Unit Footprints, Corpses, and Heaps have been changed so that they are the same size, what few units this affects have had their corpses reduced by a small amount. The only effect this may have on the game is slightly more corpses can be packed into an area without overlap -- meaning that a few extra corpses will be left behind after a battle that would otherwise have been covered up and unreclaimable. (This makes the Core Necro and Arm FARK more useful for when they go on ressurrection and reclaim patrols!)

Build Menu Changes:

Both Arm and Core's AWACs (Arm Eagle and Core Vulture) have been moved from page 3, position 0 of the Adv. Air Plant to page 2, position 5. This puts ALL Cavedog advanced aircraft on one build menu.

The Arm Panther has been moved from page 4, position 0 of the Arm Adv. Vehicle plant to page 3, position 5. Previously, it was needlessly on a menu page by itself.

Nuclear Mines (which can now be built underwater) have been added to the Advanced Construction Sub build menu. (Page 3, position 5)

The Seaplane Platform is now buildable on the Advanced Construction Aircraft build menu at Page 4, position 4. (This is the same build position used by the Core Advanced Construction Kbot to build the Krogoth Gantry, another Level 3 factory.) Because the Seaplane Platform is an advanced factory that builds aircraft, some type of construction aircraft should be able to build it. (This follows the general build rule that advanced factories are built by less-advanced construction units of the same type.) Since the Seaplane Platform is a Level 3 factory, the Advanced Construction Aircraft (a Level 2 unit) should build it because the Advanced Construction Aircraft is the only construction aircraft capable of building Level 3 buildings.

Unit Name Changes:

The Decoy Commanders have been renamed "Commander" so you don't see "Decoy Commander" when you move your cursor over top them in skirmish. You can still use F1 to see a difference. I did not change the Commander build cost to the same as the Decoy Commanders because of a gamecheat which makes Commanders buildable - if Commanders cost no more than Decoy Commanders, it would be more tempting to use that cheat.

The Core Mobile Artillery has been renamed "Pillager".

The Core Missile Frigate has been renamed "Hydra".

The Core Ressurrection Kbot has been renammed "Necro".

Unit Changes:

Both the downloadable=1; and the ovradjust=1; lines have been removed from *EVERY* Cavedog unit in TA -- they do nothing so have no effect on the game except possibly slowing it down a bit.

Land-based metal maker corpses have been made worth 1 metal so c-units on patrol will automatically reclaim them if low on metal -- previously, their wreckage would block passage but would never be automatically reclaimed. 1 metal is a neglegible amount and not exploitable as a cheat because the energy to metal conversion ratio of this "cheat" is nearly 700e to 1m! (Over 10 times worse than using an equivalent amount of energy to power metal makers.)

The units Torpedo Seaplane/s (ARMSEAP and CORSEAP), Seaplane Fighter/s (ARMSFIG and CORSFIG), Arm Escort (ARMSJAM), Core Phantom (CORSJAM), Core Adv. Torpedo Launcher (CORATL), Core Leveler (CORLEVLR) all use: ExplodeAs=MEDIUM_UNITEX;

But MEDIUM_UNITEX is a nonexistant weapon and does no damage to nearby units when they die.

This has been changed to: ExplodeAs=BIG_UNITEX;

The replaced explosion does 1/5th the damage in nearly the same radius as the self-destruct for the above units.

Arm's Moho Metal Maker (ARMMMKR) and Core's Moho Metal Maker (CORMMKR) uses:

ExplodeAs=BIG_BUILDINGEX;

SelfDestructAs=BIG_BUILDING;

But both are nonexistant weapons and do no damage to nearby units when they die.

(Because these units have nonexistant weapons for their explosions, a weapon of the same name could be created and used to cheat!)

This has been changed to:

ExplodeAs=BIG_UNITEX;

SelfDestructAs=BIG_UNIT;

Core Toaster (CORTOAST): ExplodeAs=lARGE_BUILDINGEX;

(probably still works, but just to be safe...)

armthover.fbi typo:

ARMTHOVER has a brakerate of 0.0018, BUT CORTHOVER has a brakerate of 0.017!

Therefore, ARMTHOVER has a typo in it - an extra 0 that wasn't intended.

armaser.fbi typo:

ARMASER has a brakerate of 1, BUT the Core equivalent has a brakerate of 0.12!

Therefore, ARMASER almost certainly has a typo in it - so I reduced its brakerate to 0.2!

The missions-only unit ARMSCORP has a goof-up in its FBI file:

ItalianDescription=;Scorpione

This has been changed to:

ItalianDescription=Scorpione;

The Arm Energy Storage has an error in its yardmap. It is a 4 x 4 unit with a yardmap of:

YardMap=o;

instead of:

YardMap=oooooooooooooooo;

like Arm Metal Storage - which is also a 4 x 4 unit. This was a simple cut-and-paste fix. ;)

Arm's Hawk's 2nd missile has an error in its data, it has:

weaponacceleration=13O;

instead of:

weaponacceleration=130;

(notice the "O" instead of a "0")

This has been corrected (but now only affects the old_weapons.ufo file.)

All the aircraft plants (basic and advanced) have had their yardmaps changed so ground c-units don't block production as badly (but can still occur!) while guarding them.

Individual unit _gadget.gaf build menu picture files have been added to the Amins directory for many units that lacked them.

Cursor.gaf in the Amins directory now have a better unload animation. (Thank BSR for this one!)

Help menu pictures (gotten by pressing F1 while the cursor is on them) have been added to the Arm Scorpion, the Core Sea Serpent, and the Core Hydration Plant.

Mobility changes on units:

The Arm Triton (ARMCROC) and Core Crock (CORSEAL) now has climbing ability out of the water (maxslope=30) equal to their in-water climbing ability (maxunderwaterslope=30) -- this is for metal maps like Over Crude Water, where they would often get stuck going in and out of the water.

The Arm Zipper and Core Freaker now has climbing ability identical to most other kbots. (maxslope=15) Previously they could climb only gentle slopes.

The Core Krogoth has been given climbing ability identical to the Arm Bulldog tank. This will allow it to wade into shallow pools of water but will not let it snorkle accross deep bodies of water like fully amphibous units.

Fire Standing Orders and Fire Moving Orders for mobile units have been changed so most mobile units are set to Fire at Will MOST of the time.

GAMEDATA dir (in REV31.GP3) file changes:

--

Category.tdf file has been altered to reflect the reduced number of different Categories actually used in the game.

Help.TDF is the help file viewed from inside the game. Some of the new commands added are now listed in the help menu. Page 3's last line should tell if TA Bugfix is installed or not.

The LOS.TDF (the Line of Sight tables) file has been altered to include entries out to 640 pixels -- so now far-seeing units such as the Leviathan will reveal what is in the outer edges of their sight radius.

Meteor.tdf (in the Gamedata dir, NOT in the weapons dir) has been replaced with modified meteor file. This is the data used when the +METEOR cheat is used in skirmish.

Moveinfo.TDF contains the mobility attributes of all the units in the game.

The Sidedata.tdf file stores the ai's build menus, which has been corrected. (See AI fixes section for more details.)

Sound.TDF stores the list of soundfiles used by various units. Some unused entries have been deleted.

Weapons.tdf (in the Gamedata dir, NOT in the weapons dir) has been replaced with a zero-length file to mask the one in the old Gamedata dir.

Unfinished work:

These are game bugs that I'd like to address/fix but do NOT know how.

1.AI antinukes that work in skirmish have not been made. I've made an antinuke silo that doesn't use the stockpile=1; line in its weapon data (it is NOT included in this patch), but it still seems to require the gui file and the gaf file (for the antinuke missile itself). Also, the antinuke must build 1 fake stockpiled antinuke missile (on the build menu) before the antinuke will work - even though the stockpile=1; line is missing. The fake stockpiled antinuke missile is never deducted when the antinuke fires.

2.BURSTED BOMBER BUG: Bombers could not have their bombs converted to a burst weapon -- to remove the long-string-of-bombs bug that is overused by many players who think it's a legitimate tactic. Bombers are powerful enough without this "tactic" especially when lag is affecting them. I'm not talking about the multiple-targetting micromanagement strategy where bombers are ordered to bomb another target downrange after their first -- this is little more than selecting multiple targets with shift except it removes the "stupid" stage from bombers where they attempt to either stop and land or fly in a straight line.

Bombers on patrol and fire at will, don't attack targets as they come into the bombers maneuver range. The fix I tried never worked right.

3.The Doomsday Machine doesn't always point it's big-blue-laser turret in the direction that the big-blue-laser fires..

4.I tried changing ALL landmines found in the game from yardmap=o; to yardmap=y; - because even units that didn't know the mines were there "knew" to drive around them. The reason I changed it back was because yardmap=y; causes the landmines to be near-impossible to hit with laser weapons. Only weapons which affect an area when they impact would be likely to damage the mines.

5.The Arm Spider and Arm EMP Stunner Silo problem is that paralysis does not act as a "STOP" command on units that are hit by them. And what's worse, with micromanagement paralysis can be negated entirely on mobile units. A fix for this requires an EXE change which I cannot do!

6.Also, the Core Leviathan may be partially stuck out of the water and trackable like any other ship when it's in shallow water. This I have confirmed but am unable to fix.

7.With the removal of the "commander" category in the ARMCOM.FBI and CORCOM.FBI files, the Commanders are still selectable with CTRL+C, but CTRL+C no longer centers the viewscreen on them. However, the viewscreen can still be centered on them with the "T" key. Sometimes you don't want the viewscreen centered on the commander when you use CTRL+C. It has since turned out that the "commander" category in the ARMCOM.FBI and CORCOM.FBI files has another use as well -- it prevents players from giving their allies (or enemies) their commander in multiplayer games - especially commander dies = ends games! Because this is an important limitation, I had to add the "commander" category back to the ARMCOM.FBI and the CORCOM.FBI files.

Map Tutorials

[image: image16.png]

Terragen Map Tutorial

[image: image17.png]

By Caer
OK, first off I want to make something clear - this is NOT a tutorial for making tilesets with Terragen. It is a tutorial to make an entire map in one go.
WHAT YOU WILL NEED

· The registered version of Terragen if you want to make maps bigger than 2x2. This is because the unregistered version only allows images up to 1280x960 to be rendered.

· Adobe Photoshop 4 or 5, Paint Shop Pro, or basically any image editor that has crop, resize and reduce colour depth tools. Basic stuff, really. Oh yeah - from now on, for simplicity's sake I'm going to say 'Photoshop' when I actually mean any image editor that meets the requirements.

· The Total Annihilation colour palette, or the Photoshop .ACT file.

· Annihilator 1.5. It's so much better than TAE, you wouldn't believe it. Besides, I don't think TAE lets you import an image to use as a map, although I may be wrong. I've only used it about three times.

· A program to read Zip files, for example WinZip, for opening the palette and World files for this tutorial.

· A lot of RAM - 128MB is the reccomended minimum, but you can get away with less if you're prepared to sit around waiting for long periods of time.

Now that's sorted, we can begin.
PART ONE - SETTING UP TERRAGEN

For this part, I'm going to asssume you have Terragen installed and at least know the basics. If not, install it (duh), and go to the Terragen website and look for some tutorials. The URL is http://www.planetside.co.uk/terragen/. Alternatively, just have a mess about with the various settings and see what happens - most of it is self-explanatory.

The first step is to download and open the basic Terragen world file. This is important, because it sets up the camera and sun position correctly. If you don't want to download a 1.4K file, first turn off both 'Fixed height above...' options, and use the following settings:
	Position
	x: 128
	y: -1265.337
	z: 5200

	Target
	x: 128
	y: 128
	z: 0

One thing that you must remember is that these are Terragen units, not metres.
Zoom: maximum (32)

Sun
heading: 225
altitude: 30 - 50 (doesn't matter too much)

Disable 'Terrain casts shadows', too. Although shadows make the map look nicer, it looks odd when units move into a 'shadow' area and don't get darker. You may as well disable the 'Clouds cast shadows' option too, although we won't be rendering the sky anyway. Another thing you should consider for later is the shadow and ambient light setting - you don't really want sunset-red shadows on a snow map, do you?

Lastly, you need to open the Atmosphere window and set the 'Density'/'Decay' sliders to minimum, otherwise it will look like your map is being viewed from from 470,000 feet (which it is, actually).

Right then, now that we have that sorted, on to part 2.

PART TWO - DESIGNING YOUR MAP

This part can be a bit complicated, or not depending on how much work you want to put in to your map. This is because it involves a fundamental part of map design - terrain. You really should have an idea of what type of map you want to make by now.

Basically, there are a number of ways to design a terrain:
· Using Terragen's various built-in generation tools

· Using an image editor

· Using another terrain generator, like Bryce

· A combination of the above

Personally I think Terragen generates very realistic terrain, although it can be difficult to get what you want. This is where the import/export option comes in - you can generate a terrain that kind of resembles what you want, export it as a .RAW file, tweak it in Photoshop, then import it back in to Terragen. Alternatively, you could sketch out a rough sample of what you want in Photoshop, import it into Terragen and the generate a terrain based on the existing one (look in the terrain generation dialog).
Before I go on, I had better explain the functions of the various controls in the terrain generation dialog:

· Method: simply, what algorithm is used to generate the base terrain. Try the different options, and see what happens.

· Action: easy - generate a brand new terrain, or base it on what you have now?

· Status: well, er, it's kind of obvious what this is.

· Realism: kind of complicated. Basically it stops small bumps interfering with the basic shape of the terrain. For example, try setting it to zero and cick 'Generate'. You'll see a very rough looking terrain with lots of variations in height and no real overall shape. Set it to maximum and you get large hills with smoothish edges. This image should explain things a bit:
[image: image18.jpg]

The first image is with realism set very high.

· Smoothness: this controls how smooth edges are allowed to be. When set to a low value, the resulting terrain has lots of sharp edges, making it look kind of like folded paper. Set this high for nice rolling hills.

· Glaciation: easy one, this. It simply controls how flat the bottoms of valleys are. When set quite high, you will end up with large flat areas and steep mountain sides.
Here's an example of a terrain with the glaciation set quite high:
[image: image19.jpg]

· Canyonism: another simple one, this controls how flat the tops of mountains/hills are. When canyonism and glaciation are both set to maximum, you get a kind of cliff effect.

· Size of features: pretty obvious - it controls how large your hills, mountains and general landscape features are. One thing you must remember is when you import a terrain, its vertical (altitude) constraints will be from 0.25 to 63.75. This is too high, so adjust the range to go from 0 to 30 (using the 'Modify Terrain' button).

And that's that. Oh yeah, before I continue, I'd like to plug my Terrain View program. Sorry. Terrain View 3D is a really simple program that lets you open a .TER (terrain) file and preview it in 3D (surprise surprise). You can view it with lighting, or using the heightmap as a 'texture', or you can see a wireframe view, and you can even adjust the water level! Get it from the Delphi Programs section of my website: http://caer.cjb.net/delphi/delphi.html
The next stage in desinging your map is to decide what it will actually look like: will it be a snowy wasteland, lush green fields, barren desert, bright red and blue DRUHgland (;o)), or something else? This is where the surface map editor comes in.

Terragen has a very powerful surface map editor that can create very realistic-looking ground (or not, if you so desire). The surface map is represented by a tree control, and the top layer is the parent surface. This parent surface can not be removed, as it makes up the base of your terrain. Without it, you would not see any terrain at all.
Under that you add child surfaces, which in turn can have child surfaces. Surfaces lower down on the tree get rendered on top of ones above, so if you have a 'grass' layer, then a 'snow' layer lower down, the snow will be rendered on top of the grass (as it should be).

The key part fo the surface map bit is the editor. Click the Edit button and you are presented with a whole host of distribution options (you may have to click the 'Advanced Distribution' tab first). Most of these are pretty self-explanatory, although one or two may need explaining. These are:

· Depth/scale: this controls the 'size' of the surface. In other words, setting it really low would produce a surface that appeared in small patches on the the terrain, while setting it high would make it appear in large areas.

· Sharpness: these sliders affect how sharp the boundary between one constraint and the other is. For example, setting the max altitude sharpness very high would produce a surface that would go all the way up to the specified altitude and stop very quickly. This sort of effect could be used to create a waterline, for example. Oh, and I reccomend you give each surface its own name, otherwise you'll be left with a whole lot of layers called '[New Surface]'

At this point you may be asking 'how do I make a surface use custom textures?'. The answer is you need a (free) plugin, called SoPack, by Sean O'Malley. You can get this plugin from http://www.geocities.com/~ffrog. It allows you, among other things, to create a surface that uses a texture map of your choosing, and use a greyscale image to control the distribution of a surface. So, if you wanted to create your very own custom Core Prime map, you could make a texture from a screenshot of something, and set it to repeat over the whole terrain. Voila - instant metal! Take a look at the SoPack documentation for more details.
If you really can't be bothered making your own surfaces, Terragen comes with a selection of ready-made ones that look pretty good.

Another thing you may be asking is 'what about water?'. Well, water can either be really simple, or not quite as simple (and a bit more time-consuming).
The easy way to make water is using Terragen's built-in water, and SoPack to get the transparency effect. Unfotunately, this method results in water that doesn't look that nice at all.

The alternative is to use a bit sleight-of-hand and use surface maps that look like water.
To do this, add two child surfaces to the main surface. Select the first one, and open the surface editor. Rename this surface to something like 'Deep Water'. Now, change its colour to a nice dark blue, so it looks like deep water, and set its bumpiness pretty low. Next, adjust the settings so they look like this:
[image: image20.png]Distribution Presets Advanced Distribution |

<7 Covesge 4] A»| Seales 4[|
2h~ Fctlnoss 4] [v " 3072m

Nomins scalefor bump.

Altitude Constraints:

e [T Al e

I Mnskude [T shap [lhen
Slope Constraints:

I Maxsope [v shap [[hen

I Minskpe <[o shap [> hen

Note that the maximum altitude setting is scaled to the 0 - 30 range of the terrain. The range TA uses is 0 - 255, so you will have to adjust the desired level to fit in the 0 - 30 range.

Next, select the other new surface and call it 'Shallow Water', then adjust its settings like this:
[image: image21.png]Distribution Presets Advanced Distribution |

T e B
Fractal noise 4 » Depth m

] I7]
s Nomins scaefor bump.
2 & Tex | mapping and distibuion

Altitude Constraints:

© Mosatuce [0 shap el »hen
© Mnskude [shep | [hen
Slope Constraints:
I Maxsope [v shap [[hen
I Minskpe <[o shap [> hen

This will create the appearance of shallow water near the shore - you should adjust the colour to look like your base surface with water on top of it.

When you render, you should end up with something looking like this:
[image: image22.jpg]

If you want to be really clever, you could render two images - one with SoPack-water and one without, then combine them in Photoshop. You'll need a lot of patience for this though, as working with huge images will be very slow.

Now, although the image above is a pretty good approximation, it can be improved. This can be achieved even without the aid of SoPack - first, save your current World file, as we'll be making some pretty drastic changes now.
Once that's done, make a note of the maximum height of the water - you'll need this value later. Next, delete all child surfaces, leaving just the main one. Click on it, and then click the edit button. When the editor appears, set the surface's colour to pure white, bumpiness to zero, and coverage to maximum (i.e. with no height/slope constraints - the surface should cover the entire terrain). The next step is to add a single child surface, and make it pure black, again with no bumps. With this surface, set the coverage to full and with no slope contraints, but with the maximum altitude set to the desired water altitude, with sharpness set to maximum.

Next, you need to open the Sun control window, and set the sun altitude to -90. In other words, the sun must be pointing straigt up, underneath the terrain, like this:
[image: image23.png]

Now, click the 'Background Light' tab, and set the shadow lightness to 100, and the shadow colour to white. Make sure the 'Single Colour Shadow Lighting' option is selected.

Now, when you render your image (at the same size as the original), you should end up with something like this:
[image: image24.jpg]

Save this image as 'watermask.bmp' - you'll need it later.

That's as much as can be done at the moment regarding map design. Now all you have to do is decide how big your map should be. The map size is based on how big you render your image, but you must make sure the width and height are in a 4:3 ratio. In other words, the width must be 1.33333 × the height. If it isn't, the rendered image will have bits missing, making lining up the heightmap a real hassle.

Make sure the 'Detail' slider is set all the way to the right, unless you want a very pixelly map, the click 'Render Image'. And wait. Depending on the size of the map and how many surface layers you have, and the speed of your computer etc. etc., this can easily take 6 hours or more. For the record, my Mallodden Plain map took 26 hours to render on my ancient P133.

Once the image has been rendered, you can save it. This is annoying, as I'd much prefer it if you could specify a filename beforehand and render directly to the file. I should warn you that for a 12x11 map, you will need approximately 400MB of free space to account for the swap file and actual image. A 6400x4800 24-bit bitmap takes up 88MB! This is where having the odd half-gigabyte of memory comes in handy (I only have 64MB).

PART THREE - MAKING IT A MAP

Now that you have your enormous bitmap (or two, if you're going to include water), you need to open it in Photoshop.
You can skip the next two paragraphs if you aren't going to have water in your map.

Select the 'water mask' image. Before we can do anything with the image, it should be converted to Bitmap mode (2 colour), to speed up processing and save memory (24x less memory needed!). Once that's done, copy the entire image to the clipboard.
Next select the main image, add a new layer above the background, and fill it with a colour that sort of matches the basic 'water' colour. Making sure the new layer is selected, go to the Layer menu and add a layer mask. Open the Channles tool palette, and paste the clipboard (which contains the water mask) in to the layer mask 'channel'.
[image: image25.png]E Lowrraese ctiny I

You will then end up with a new layer that covers only the 'water', although at the moment it looks a bit nasty. To fix this you need to adjust the overall transparency of the layer - around 40% looks quite good. To further improve the effect, you could try adding noise, then blurring it, or create a wave effect using the 'Lighting Conditions' filter. Another thing you can do is use the 'water mask' to create a selection, then use this to apply a Gaussian blur with a level of around 0.8 to the main image, to blur the underwater areas a bit. You could also try blurring the mask for the water layer slightly. Finally, you may need to adjust the colour of the water, as you may not get the results you expect. In the end, you should have an image which looks like this:
[image: image26.jpg]

You can now crop away the black areas. HOWEVER, there is a particular method to this, which is best explained by this image:
[image: image27.jpg]

Now you can reduce the colour depth of the image, using the TA palette (you need to flatten the layers first though - you may want to save a backup .PSD file at this point). You must remember to use the 'dither' method, otherwise Photoshop will match each colour to its nearest corresponding colour in the TA palette, resulting in a hideous mess of a map. This reduction in colour depth will also take quite a while (35 minutes on my P133. Yes, I enjoy moaning about my computer's speed, or lack of it). Now save the bitmap.

Next you need to export the terrain as a .RAW file in Terragen, then open it in Photoshop. You will also need to flip it vertically, because Terragen writes the file backwards. There's probably a good reason for this.

Once you have opened the heightmap, you need to crop it according to how much was cut off the main image. The reference used to crop the heightmap must be based on a 'low' part of the main image (like the bottom of the sea). This should explain it better:
[image: image28.jpg]

[image: image29.jpg]

Of course, on a larger main image you will be cropping off quite a large number of pixels, but you must still crop the same amount from the heightmap, i.e. just because you're cropping a large amount from the main image, it doesn't mean you should crop a larger amount from the heightmap. If you zoom out from the main image, and crop at a low zoom level (like 16%), it will be easier to judge.

Once this is done, you need to resize the heightmap so it is 1/16th the width of the main image, and (1/16th) + 8 the height of the main image. For example, if the main image was 512x512, the heightmap would be 32x40. Now you need to crop the image so the height is 1/16 the height of main image; in other words cut off the bottom 4 rows. The reason for doing this is that Annhilator (and maybe TAE) cut off the bottom part of the main image, so the heightmap doesn't have to go all the way to the bottom. That's not a very good explanation, but it's the best I can think of. Sorry. Once you're done resizing and cropping, make sure the heightmap is in greyscale mode, and save it as a .BMP (Windows bitmap) file, called heightmap.bmp or something.

Now comes the awkward(ish) bit - importing into Annihilator. First, obviously, you need to load Annihilator. Next, click the 'New' button, then click the 'Bitmap' tab. Enter the filenames as appropriate, or use the '...' buttons, then click OK. Again depending on the size of your map, the speed of your computer, the amount of memory in it, and the phase of the moon, this may take a while.

When Annihilator has imported your map, the first thing you should do, if your map has no water present, is click the 'Height Editing' button ([image: image30.png]

), and move the 'Sea level' slider all the way to the left. Now, switch on the contour map (the button), and check the contours match the terrain. If everything has gone right, they will. If not, things can get sticky. If the countours appear mis-aligned, it may simply be a case of re-opening the .RAW heightmap (the original), and then resizing and cropping it slightly differently. Because of a bug in Annihilator, you will not be able to save the new version of the heightmap over the old one, so you'll have to call it 'heightmap2.bmp' or something. If things continue to not look right, you may well end up with 4 or 5 different heightmap bitmaps.

If you have decided to include water in your map, you should simply adjust the Sea Level slider until the red contour line matches the shoreline on your map image.

Once you have the heightmap/contour bit sorted out, it's time to set the map settings. This is up to you, and beyond the scope of this tutorial. Once you've done that, you need to save your map and close it, because Annihilator won't let you place any features on your new map yet.

Next just re-open the map, and start placing features!
Creating Custom Tilesets

[image: image31.png]

By C_A_P

· This tutorial will walk you through , step by step , my technique for creating unique tilesets for TA maps. You will need the following tools to use this torial to the fullest:

· PhotoShop 4.0

· Eyecandy (plug-in for PhotoShop)

· Paint Shop Pro

· TABuilder

· Annihilator .21

Create a concept

1. Its always a good idea to draw a simple concept of you map first, before you delve into the graphics. A program such as PAINT will do the job just fine.

2. The map we will be designing will be very small, but enough to get you started.

3. The following is a very simple concept sketch I whipped up in PAINT in about 1 min.

[image: image32.png]

4. Now that we have our basic concept, we can begin with creating the graphics.

Design Your Texture and create a template.

1. There are a couple of things you will want to keep in mind while designing your texture. The most important, is that you want it to be tilable, and seamless. Also, with the current version of Annihilator, you cannot import a .bmp that is larger than 512 x 768 in size. This will create a nice 24 x 16 section .

2. So, lets get started. You will want to create a template first.You can experiment here with your own ideas, or use the one that came with this tutorial. (template.bmp). You will want to keep this template at 512 x 768 in pixel size. So fire up PhotoShop, or your favorite paint program.

You will understand where im going with this concept as we progress.
 [image: image33.jpg]

This is the main texture of our little map. We will use this section to spawn other sections.

3. Now that we have our basic texture done , save this as template.bmp. This will be the template that we use to create the terrain features.

Create the Terrain Features
Create a simple platform

1. We will use our template file as a base for all of our terrain features. The first feature will be just a simple small hill. Open the template.bmp file in PhotoShop and select an area. I've just selected a square area to create a very simple platform.

[image: image34.jpg]

2. Under the filters menu in PhotoShop, select Eyecandy and then Outer Bevel.

3. These are the settings I used to create the simple platform

· Bevel Width: 54

· Shape: Flat

· Smoothness: 8

· Shadow Depth: 83

· Highlight Brightness: 44

· Highlight Sharpness: 24

· Lighting Direction: 128

· Lighting Inclination: 73

[image: image35.jpg]

A nice simple little platform that looks fairly convincing

1. You will actually want to perform the above procedure TWICE. The second time, change the lighting direction parameter to 330. Experiment around with the settings a bit to suit your fancy.

2. Voila!! We have just created our first simple platform, and it doesn't look too shabby. Save this as plat1.bmp

Create A Pool of water
Now we will create a little pool of water.

1. Start by opening up the template.bmp file in PhotoShop again. (see where im going with the template thing....this retains the tileability of each section)

2. Make a nice jaggedly, rounded selection

[image: image36.jpg]

3. Now go to the selection menu and choose invert from the menu.

4. Go to Filters, select Eyecandy and choose Outer Bevel again. Settings for the tutorial are as follows:

· Bevel Width: 45

· Bevel Shape: Rounded

· Smoothness: 8

· Shadow Depth: 83

· Highlight Brightens: 44

· Highlight Sharpness: 24

· Lighting Direction: 128

· Lighting Inclination: 73

1. Again, you will want to repeat this process twice, changing the lighting direction from around 128 to about 330. Play around with these settings to get the 3D effect looking nice....

 So far, it should look something like the picture below

[image: image37.jpg]

2. Now, go back to the selection menu and choose invert again. Now choose contract and enter 15 as the value. Your selection should be right in the middle of slope, making a nice level for some cool looking rusy water texture.

Create the acid
Now that we have our selection, its time to create the acid texture, so it looks like our little crevice is filled with some kind of corrosive substance.

1. Ok, now for some cool looking corrosive goo to go with our texture. For this tutorial we'll go with an almost lava type texture that looks very nasty.....

2. Click on the Foreground color and make it solid black.

3. Click on the Background color and change the RGB values to:

· Red: 190

· Green:48

· Blue: 25

1. Now select Filter and then Render and then Clouds

2. It should look something like the picture below:

[image: image38.jpg]

3. Lets add a little texture to the liquid . Select Filter then Eyecandy and Glass

4. I used the following settings, but feel free to experiment:

· Bevel width: 9

· Bevel Shape: Button

· Flaw Spacing: 7

· Flaw Thickness: 18

· Opacity: 75

· Refraction: 46

· Glass Color (Solid White)

· Highlight Brightness: 0

· Highlight Sharpness: 22

· Lighting Direction: 135

· Inclination 85

Now save this as Acidpool.bmp and we're ready to move on to the next section.
Create a River of Acid

This will walk you through creating a river of acid, using two sections.

While creating my maps, I ran into an annoying bug in the current version of Annihilator (.21). If I tried to import AND place a bitmap as a section that was larger than 512 x 768 I got a script9 error. So ... I used the following method to create larger sections....

1. Start again, by opening up the template.bmp texture in PhotoShop. Go to Select and choose all

2. Then go to the edit menu and choose copy

3. Now go to Image and select Canvas Size

4. Orient to the top left, and resize it to 1536 x 768

5. Now you should see something like the following picture

 [image: image39.jpg]

6. Now go to the edit menu and choose paste

7. Zoom in nice and tight and align the pasted portion exactly with the other side.

[image: image40.jpg]

8. Now select a river looking area and perform the same operations as you did with the acid pool. When you are done, you should come up with something that looks something like the picture below:

[image: image41.jpg]

9. Save this as river.bmp and lets move on.

10. Now to work around that bug that lurks in Annihilator

11. We have to split the river in half, each as their own section. To do this, go to Canvas Size and orient the picture top left and change the size to 768 x 512. You will get a warning that the image will be clipped. Don’t worry, this is what we want!!!

12. Save this as River-l.bmp

13. Open River.bmp again. Do the same thing, except align right before you resize it. Save this as river-r.bmp

14. You should have 2 sections like the ones below:

[image: image42.jpg]

Converting the sections to the TA color palette

The last portion of the graphics tutorial is converting these to the TA color palette so that they can be imported as sections in Annihilator.
1. I have included the TA palette for Paint Shop Pro in this tutorial. Open each of the bitmaps (except for River.bmp) in Paint Shop Pro

2. select 1 of the images and choose color and load palette (make sure you have error diffusion turned on), select TA.pal and re-save it.

3. Do this for each of the sections; template.bmp , plat1.bmp, acidpool.bmp, river-l.bmp, and river-r.bmp

Importing the bitmaps

1. In the last step of Part 1, we converted the bitmaps to the TA color palette. We will now import those bitmaps into Annihilator .21 as sections. So, fire up Annihilator and lets get goin....

2. Click on file and then new map and lets create a simple map to place our sections on. Select Tiles tab and choose tutorial.tnt for both the TILES and ANIMATIONS values. Leave the default height at 75 and sea level at 50. Map size of 100 x 100 is fine. Enter whatever you desire as map description and mission description.

3. Go to Sections and choose Load BMP as Section

4. Now go to the directory that contains the bitmaps and select template.bmp and click OK. Notice how it appears on the right side as a 16 x 24 section. Repeat this process for each of the bitmaps. When you're done it should look like this

[image: image43.jpg][Tiles
[~ Height
[anms

5. At this point, it's a good idea to save these off as a section. Do this by selecting sections then save sections and choose a name and location. These sections are included with this tutorial.Get them Here.

6. Now, click on the height button to disable it, and place the first one on the map about 3 tiles down from the top and 1 or 2 tiles in from the left. This will make more sense later....

7. Repeat the process, separating each section by 1 or 2 tiles. When your done, your map should look something like this. This will make more sense as we go on...

[image: image44.jpg]

Ok, now its time to do the fun stuff like height editing and creating the terrain archives

Editing Height

This will walk you through editing height and saving a terrain archive so we can create our map

1. OK. Now that the easy part is over, lets move on to the more time consuming part of making maps. Height editing. Switch to height mode..

2. Ok, the template is for the most part finished already, it will be a flat section of ground, so we will leave that piece alone.

3. Lets move on to the section that has the platform. For this tutorial, we will make the platform tall enough to give it some advantage, but not steep enough so that units cant get up the sides. So we want all units to be able to get up the sides and onto the platforms,since it doesn't LOOK to be very tall.

4. In the Height Interval section, press the spinner until its value is 5

5. So now we have to edit the height to make it appear as though it matches the graphics. Ok..lets start at the top left. Just at the base of the platform click once with your LMB.You will see a little portion go up at a slight angle. Move the pointer to the right a hair and click the RMB again. You will see it start to pull up the line at the bottom of the platform. Get into this rhythm..move click....move click....move click....should look like this when your done.

[image: image45.jpg]

6. Ok. You can probably tell that this is going to take some time. Next step is to move up to the next line and start again. This time click the LMB 3x so it creates a nice even slope. You might find it easier to adjust the height to 15 units here, so you don't have to click 3x each time. When you're done, it should look like this...;

[image: image46.jpg]

7. Now we want to create the next one. Increase your height interval to 15 this time and click on the next line up and do the move..click....move thing. Now we want to smooth out the edges a bit, so adjust your height interval back to 5 and go along the edge to make a nice smooth slopeit should look like this.

[image: image47.jpg]

8. Ok. Now adjust your height interval up to 50 and increase the aperture area up to 5.To save some time, we are going to raise the platform up to its full height 125 and worry about the edges afterwards. So, move the aperture to the edge of the platform and click. You should notice that a much larger section moves up this time....do this until the majority of the platform is raised. It should look something like this when your done...

 [image: image48.jpg]

9. Ok. Now finish it by going around the edges and making a nice slope on all 4 sides. Spend some time to make it nice and tight around the edges. The ground should be at 75 and the top of the platform should be 125.

[image: image49.jpg]

10. Time to move on to the acid pool next...save your work at this point either as a .tnt file or as a .ann file.

Finishing Touches

· When editing sections that contain parts that are going to be below sea level, its important to know what you want your map to behave like. The TA engine is limited in what it can do. You cannot have one part of it be 'lava' and another part be 'water'. For the purposes of this tutorial, I've elected to make the acid pool just shallow enough for the units to easily enter in and cross, but not deep enough to allow a shipyard to be built. And for an added twist, since im sure most of you have TA:CC by now, I will show you how to make these sections cause damage to the vehicles that enter them....

1. Start by entering height editing mode and changing the height interval to 15. Click around the edges of the pool ONCE. This will create a nice lip around the rim that the units will have no problem going over. Once you have the whole rim created, change the height interval to 30 and click just inside the first area you did. You will notice the lines starting to turn blue at this point. This is because the height has fallen below sea level (should be at 45, and sea level is at 50). This is just deep enough to make our acid pool do its job. Finish it up, and it should look like this when its completed...again..save your work as you go along!!!

[image: image50.jpg]

2. Now move on to the Left and Right river sections. By now you should have a decent understanding of how height editing works in Annihilator .21. The two sections , when finished should look like the pictures below. Once all your sections have been edited to your satisfaction for height, its time to move on to the next thing…

	[image: image156.jpg]

	[image: image157.jpg]

Now its time to create a Terrain Archive and make your map!

Our little map is coming along nicely, we have all of our pieces created, now its time to put them to use!. To make the job of making a map easier, we should create a Terrain Archive. This isn't NECESSARY, but makes it easier. It also enables you to be able to distribute your tileset to other mapmakers in the TA community.

1. Press the button that looks like three dots. This will create a new, blank selection palette. Highlight the word default and press backspace enough times to clear the word and replace it with Tutorial

2. Position your cursor on the top left side of the template section. Press and hold down the RMB and drag a rubber band around the section. MAKE SURE you select only the section. It should be exactly 24 x 16. Let go of the mouse button and the selection will remain. Press crtl+c to copy the selection, with its newly created height info , to the selection palette.

3. Repeat this process until you have all the sections re-copied over with their new height info.

4. Go to the sections menu and choose export terrain archive. The following window will come up.

[image: image51.jpg]Tertain archive flename

o eeonsioass |

Teran aichive desciption

[Tutoiabty C_AF.

Landscape ype Defauit sealevel

[Metal/Laval 50

Select section paletes to place in achive

~Tiles

Land fes.

@ | wateriies.)

[

arnis

Cancel

5. Check the tutorial box, so that it will only export the selection palette that includes the height

· Give it a name

· Give it a description
· Give it a Type
· Leave the sea level at 50 for this
· Press the land tiles button and choose 1 or 2 tiles for land
· Press the water tiles button and select 1 or 2 tiles for water
· Press OK (don't worry about the edit anim list one for now)
· Done, now we just have to study our original design and decide how to make the pieces fit...

Make your Map

Now its time to put it all together.

1. The first thing to do is press file and new map and it will open the following dialog.

[image: image52.jpg]TensiSet | Bimen] Tes |

Mep
WL Height Map rame
= N E = [CAPsTuom

Map desciption

[E+5 Tuormimep
Totanachive

o Sectorsiora 2 i

Terain optons
@ Landmap C Wotermap

Archive description. TutoiatBy C_A P
Landscopetype MetalLava

oK Cancel

2. Enter in whatever information you'd like, but the width and height should be kept the same for the purposes of this tutorial. And of course, the locations of various files will be different. Press OK and give it a few seconds....and presto! You should have a fairly nasty looking map with all your sections, including height values, on the right hand side.

3. Now, begin to place each section, starting from the top left.

4. Place the Platform section in the very top left. Place a ground section to the left of the platform. Then one more ground section, then another Platform section. It should look like this so far....(minimap view). Notice how it all fits together seamlessly...

[image: image53.jpg]

1. Now, just work your way down the map. The next row goes like: Acid pool, ground , ground, Acid pool.

2. The next row is: ground, river left, river right, ground.

3. The next row is: Acid pool, ground, ground, Acid pool.

4. The last section is: platform, ground, ground, platform. Voila!! Our map is nearly complete! It should look like this:

[image: image54.jpg]

· Ok!! We have created a reasonable facsimile of our original concept drawing in tutorial 1. (Notice I added some extra acid pools that weren't in the concept map).

· Now, all we have to do is place the starting points, features, and set the map properties, and we're ready to test it out!
· I will let you dictate where you want the features to be placed, and the starting points.
· Now, save the map as a .tnt file. It will also create a .ota file that contains all the various settings of your map. We will want to open this .ota file in a program such as notepad. Add these two lines in the section that reads [GlobalHeader]

· waterdoesdamage=1;

· waterdamage=100;

This will make it so that when the units go through our little 'acid' pools, they will be hurt....badly. You might want to adjust this to a lower setting, but I think its funny to send a few flashes through the acid and watch it smoke and blow up in a few seconds....

It should look like this:
[image: image55.jpg]E{ tutorial.ota - Notepad
Ele Edt Seach fop

pbalHeader] 5
<
missionnane-C_a_P's Tutorial Map
missiondescription=6 x 5 -Tutori
planet-Acid;
missionhint:
brie

narration=

glamour=;
lineofsight=0;
mapping-8;
tidalstrengt
solarstrength
1avauorl
killnul-50;
timemul-;
minwindspee
maxwindspeed-3000;
waterdoesdanage=1;
waterdanage=100;
gravity-112;

g 1 :J;‘

AI TWEAKING GUIDE

[image: image56.png]

BY Switeck
What is the ai?

AI stands for artificial intelligence. It refers to the computer-controlled players in skimish games AND multiplayer games with computer players added.

Cavedog's ai, and its problems:

"From time to time, people complain about the weather. But no one ever does a darned thing about it." -- Mark Twain

The ai in Total Annihilation was quite dismal in versions 1.0 and 1.1, and only slightly better in v1.2b1. With the v2.0b1 patch, the ai was improved but still not much of a threat in a 1 vs 1 ai game against a good player. Cavedog has considered improving the ai to be a low-priority goal in patches, and it's looking like the v2.0b1 patch may be the best ai that cavedog makes.

In the earlier ai's (before v2.0b1), what made the ai dismal was that it was limited to only 5 factories and 6 construction units. It poorly managed its resources and was often unable to constantly run even that pathetic amount of production. It would try to attack with ground units on a sea/island map. Or it'd build metal makers on all-metal maps. Or fill its base up with crawling bombs that never moved.

In later versions the ai was not quite so bad, but still shared many of the same problems. With v2.0b1, it looked like Cavedog *almost* knew what they was doing. Finally they'd made an ai that could build a huge base in a reasonable amount of time AND build a large attacking force. No longer did it build many of the absolutely useless units like lots of radars and crawling bombs. I even lost a game to it on Metal Heck while playing with 2 people vs 3 ai's over the internet.

Despite its many improvements, the v2.0b1 patch added NEW problems to the ai. Since that patch allowed cavedog's add-on units (and even 3rd party units) to be used by the ai, the ai would build many of the new units without limit. Although this was ok with units such as the Core Sumo, this was worthless with the Arm Marky - causing the area around the advanced k-bot labs to become so crowded that the labs could no longer make any more units. With the fixed base units, this was even worse: The ai didn't know when to quit building naval metal makers, naval missile towers, and naval laser towers.

Cavedog's built-in AI is simply shameful in v3.0 and v3.1 of TA:CC. One would expect that with each patch to the game that the ai would slowly get better. But the ai went from decent in v2.0 to terrible in v3.0 and almost as awful in v3.1. The v3.0 patch was the first patch to use Core Contingency which introduced many new units into the game that were specialty units that were almost all unuseable by the ai.

A major complaint of the ai in v3.0 and v3.1 is that it builds a base and lots of construction units but very few attackers. It's like the ai wants to play a game of sim-city instead of a wargame. With the addition of TA:CC, all the new units that CAN be built tend to "water down" the ai. A BIG problem is the unit count, with 70+ new units it is impossible for the ai to build a reasonable number of any particular unit.

General problems with all the ai's made by Cavedog:

--

All the ai versions would (on very rare occassion) build a nuke silo or an antinuke silo. But never would a nuke be fired nor would the antinukes shoot down nukes shot in its direction. A hacked unit that acts SIMILAR to the real unit is required for the ai to actually shoot nukes and possibly antinukes.

The AI plays the map, not the other player. Metal spots (mostly) determine where it builds metal extractors and thermal vents are where it sometimes gets sane and builds a geothermal plant. Its base ends up being built around whatever features are on the map, with no consideration for where its enemy/s are. It doesn't consider what the player is doing to decide what to build next. It looks for the nearest enemy unit to its attack force, that's almost all it knows to do about the enemy player. If you do something unexpected, it falls apart. (The "Solitaire" bug or "Sim-City" bug)

All the ai versions also have their attacking ground units "sleep" after destroying all nearby targets. The ground units quit moving for a couple of seconds, making them easy pickings for things like guardians. In my opinion, this is probably the ai's BIGGEST weakness - but it is one that is unchangeable by ai profiles. (The "Coffee Break" bug. Maybe it's a union thing...)

All the ai versions would have their ground forces concentrate their firepower on 1 unit. Often, the ai ends up shooting at resources (like a closed solar, which takes quite a lot of damage to kill) while nearby base defenses pound away on them. (The "Tunnel-vision"/"Target Fixation" bug)

Sometimes, because of the terrain or DT, the unit the ai is trying to destroy cannot be hit - but the ai doesn't quit trying to kill it. A good example of that is when peepers are landed in the middle of the square columns on Metal Heck before the ai's ground force arrives. Until a Merl or similar unit that can shoot over hills arrives, the peeper is reasonably safe. Another good example is a sub close to the shore of the enemy base - ground units will wade into the shallow water trying to get to the sub, but that only makes them vulnerable to torpedoes. (The "Why won't it die?" bug)

If the unit the ai is trying to destroy runs away, the ai's ground forces will chase that 1 unit around the map until it either gets destroyed or it gets about 2 screen lengths away from the ground force. Note: flash tanks are really good for doing this. (The "Pied-Piper" bug)

Any of the ai's units that are not already shooting at something sometimes fire on whatever enemy unit gets into their range. (The "Free Will" bug) Whoops! Maybe that's not a bug. Probably good the game has that bug! ;)

If a friendly unit is near where another friendly's weapon hits, they often take spash damage. Although this is not a bug in itself, the ai doesn't try to stay out of the line-of-fire. Construction units are especially bad about this - maybe they're suicidal... (The "Friendly Fire" bug)

If the ai's commander is damaged, it stops where it is for up to 15 seconds. This makes it very likely to be hit again, since it's not trying to get away. Worse still, if the ai's commander is being hit very quickly over and over again by multiple units, it doesn't even shoot its wimpy laser at the target it just twitches until it's no longer being fired at or (more likely) it dies. 3 flash tanks shooting the ai's commander at one time are good at making it wiggle helplessly till it dies. (This is just a "Gone Stupid" bug.)

After many attacks and retreats, the ai's ground force gets smaller and smaller. Makes you wonder if the ai is becomming pacifistic. This ussually happens after the ai's base has been left alone and it's had hours to build up without its base getting bombed. This is because the ai is at or near the unit max. The lower the unit max, the worse this problem gets and the quicker it occurs. The ai doesn't avoid building a base containing so many base buildings that it cannot build any ground forces - this is because the ai doesn't know what the unit max is! It could be only 100 units max, and the ai will still try to build a large base. ("Make peace not war" bug.)

Massed aircraft are considered by many to be the most powerful attacking force in the game, yet rarely does the ai have even 3 aircraft working together. The ai's aircraft wander alone randomly around the map. Only if the aircraft stumble accross an undefended unit are they likely to successfully destroy it and survive. Never is more than a modest air defense needed to prevent the ai's airforce from destroying a base.

The ai doesn't build ENOUGH resources quickly enough to keep up with its rate of consumption - often it has few solars and metal extractors to run 3 or more factories and 8 construction units.

A key AI problem is that some units aren't useful to the ai. The ai will build multiple radars right next to each other, or build metal makers when out of both metal AND energy. This compounds the ai's weakness in resource-gathering ability - already LOW on resources, the ai generally wastes what it does have on units that it doesn't know how to use.

But that can be changed!

Without modifying Total Annihilation (other than OFFICIAL game patches), if you wanted the ai to give you a good fight in a skirmish game, you either have to take on 3 ai's vs you (or worse odds) or restrict yourself to give the ai a chance (no nukes, berthas, dragons teeth, aircraft, etc, etc).

Now, there's an alternative: because Cavedog made TA easy to be changed and added to, the ai can be changed as well! In the absence of an offical Cavedog fix to the Ai problems, we can design our own AI profiles which influences many things that the computer does. Just by eliminating the useless units (to the ai only!) the ai can be improved over what Cavedog has made. And by balancing the useful but expensive units, the ai can be made even better.

I've discovered that almost every time I eliminate units so the ai no longer builds them, the ai generally gets better. Or, if I add in whole groups of units the ai tends to become slower in attacking and base-building.

My ai profiles attempt to fix the problem by changing what the ai can build and how often it can build it. This doesn't permanently modify the game but it does fix some of ai problems in the game. The patch is totally compatible with TA, and can be used in multiplayer games. What's more, if you put an ai into the multiplayer game it is controlled by YOUR ai profiles, not the host computer's! What this means is your ai may be better than anyone else's in the game.

My ai patch tries to fix the problems not caused by the underlying ai engine hard-coded into the EXE. There are still problems in the game that prevent the ai from playing a good game EVERY time it plays, like when it builds its vehicle plants with the exits blocked by walls - because the ai engine controls WHERE it builds, my ai profiles only control WHAT it builds. I do not claim my ai is unbeatable, but players will find skirmish games against the ai more of a challenge.

What are ai's and Where do I put them?

The ai's are simple text files that can be viewed and edited with almost any word processor, including Wordpad and Notpad. All the ai's go in the AI directory under TOTALA. If the standard install for TA was done, all the ai files are in the C:\Cavedog\Totala\Ai directory. Cavedog DOES NOT create this directory for you nor will there be any ai files in it unless you place them there, this is the directory you have to create to change the ai.

In the (unlikely) event you wanted to remove the ai profiles so the game uses the original built-in ai profiles, either delete the files in the \Ai directory *or* rename them or move them to another directory.

How does the computer know which ai profile to use?

--

The map files themselves determine which ai profile that the computer will use on each map. This is a single line in the OTA file of the map:
aiprofile=default;

Note: if the maps are stored in UFO file format (or even HPI or CCX), they *still* contain OTA files. The only difference is that the OTA files are compressed inside the UFO file.

In TA:CC there are many standard ai profiles that a map author can use for their maps: Acid, AirBattle, Default, Hover, Krogoth, Metal, Missions, SeaBattle, Urban, and Waterwrld. All are ordinary text files that contain what the ai is allowed to build for those map settings. Most maps will work ok with one of the above ai profiles, but putting in the wrong one can be worse than none at all.

There's nothing worse for the ai than being told that the map is a green land map (DEFAULT.TXT) in the OTA file when there's water on it and it should probably use AirBattle or SeaBattle ai file instead. Trying to flash-rush from one island to another just doesn't work. ;)

ANY map can benifit from an ai profile designed specifically for it or for its type (water/land/metal/wind). A few maps need something more for the ai to attack before the 30 minute mark - that's where a modified ai is really needed!

How do I change the ai?

The ai text files use simple commands to tell the ai what it can and cannot build. Most such commands only affect 1 specific unit, but there are a few universal values that can be used to affect groups of similar units or units all on one side. Sadly, the universal values aren't as useful as they might seem - because they often affect TOO much.

Units are refered to by abbreviations made by Cavedog or 3rd party unitmakers. A table of all the units and abbreviations is a good thing to have to figure out what an abbreviation is for a certain unit or vice versa. The abbreviation's first 3 letters almost always (except in the case of a few 3rd party units) tell which side the unit is made by - either ARM or COR. And the total length of the unit abbrieviation is 8 letters. Ussually, the name of the unit becomes the abbreviation for the unit - such as ARMFLASH or CORCAN. Other times, the abbreviation comes from the unit's function such as ARMHLT (the Sentinel laser turret). The rest of the time, you just have to wonder what the people at Cavedog were smoking: ARMCROC (I thought Crocs were Core units!), ARMTHOVR (a throw-over?), CORAPE (Core can build apes?), CORGATOR (sounds amphibious?), CORSEAL (I assume this is a naval unit?), CORSS (nazis?), CORTHOVR (whatever it is, Core's got one too!), CORUWMEX (underwear mexico?), CORVROC (well, roc is a mythological flying bird so this is some kind of flying unit?), CORWIN (but not CORLOSE?).

Limit tells how many of a particular unit to build and always has the form:
LIMIT unitname # (with a number from 0 to at least 99)
- example:
Limit ARMMAKR 0
means the ai is not allowed to make any Arm metal makers.
(Note this isn't the same as the Arm Moho Metal Maker or Core metal maker!)

The effects weight has is a little harder to understand. If the weight command isn't used then I presume the game uses a default weight of 1. (I'm *REALLY* not sure on the default weight, so I try to weight everything!) The Weight command increases or decreases the probability that a certain unit will be built NEXT and always has the form:
WEIGHT unitname # (the smallest usable number is 0.05, the largest is probably 255)
-example:
Weight ARMFLASH 9
means Flash tanks would make the vehicle plants seem like flash tank only plants.
(this might be part of a flash-rush ai.)

Another "command" seen in many ai text files is 2 divided-by signs together "//" on the start of a line. It tells the ai to not do whatever's on this line and is just info to read if you're trying to understand what the ai does.
example:
// Nuke by the 10 minute mark!
(doesn't do anything, but sure looks good. :)

There's even divider commands to separate different parts of the ai text file for easy setting, medium setting, and hard setting. These are the "PLAN diff" commands. If you want to include parts of an ai file that are common to all difficulty settings, that can be done by putting the commands BEFORE the plan sections. example:

weight ARMFLASH 9

plan easy
// total pushover, doesn't build anything it might accidentally hurt you with.
limit ARMFLASH 0

plan medium
// it might try to attack you...
limit ARMFLASH 10

plan hard
// Plan to lose!
limit ARMFLASH 99

(So, for the above example, all difficulties weight flashes to 9. But the different skill levels only allow the ai to build so many flash tanks at one time: 0 for easy, 10 for medium, and 99 for hard.)

If for any reason a similar command is repeated twice in an ai profile, like:
limit ARMFLASH 0
limit ARMFLASH 99
the TOP command would be the command the ai uses (UNLESS they're under differnt SKILL settings) - and no flashes would be built. Although you'd be a little crazy to have that kind of repeated lines in your ai, universal commands such as:
limit plant 10

(Limits TOTAL number of factorys/plants the ai can make to 10.)

could override later commands like:
limit ARMAAP 12

(Limits Arm's advanced aircraft plants to 12.)

That's all the commands I have. There's nothing there about not building something until the ai has enough energy/metal. There's also nothing there about NOT building something if the ai's under attack. The original Cavedog-made ai profiles do not use reasonable weights OR limits on units. This is why I say the ai can be improved over Cavedog's but only so much. Because the ai will always be a little random in what, when, and where it builds. And it'll almost never build something right when it needs it most.

However, if something is weighted VERY low (I.E. Weight ARMGUARD 0.05) then that item will most likely only get built if the construction units/buildings have nothing else they are allowed to build. So when all the resources are finished, THEN my ai is allowed to build guardians which are very expensive metal-wise.

Weights seem to work better when placed at the top of the ai profile. Since the ai profile is read from top to bottom, if 2 commands change the same thing then the TOP command would be the one the game uses.

All this is not enough information to make a good ai, however. That is best done by trial and error, as mine has over the last 6 months.

Then what does make a good ai?

I ask myself that question a lot:
Is it an ai that attacks early?
Or a early bertha-builder?
Or an ai that builds a well-defended base?
Are its ground forces mostly tanks, kbots, or both?
Does it build lots of aircraft?
What about an ai that will regularly commander-rush you?

These things can all make an ai BETTER, but NONE of those are what makes a good ai!!!

A good ai is one that can get resources quickly and uses all its resources to further increase its growth AND attack the enemy. The way it attacks the enemy is just the details! If you don't have the resources to run your war machine, your war machine doesn't run.

An ai can be made to take almost all of its starting resources and make flash tanks out of them. This could make for an ai that flash rushes quite well, but its later attacks would dwindle in strength or at least not grow very quickly. After finding out how to defeat it once (hint: try building some HLT's or LLT's with DT around them...), it'll quickly become less and less of a challenge - meaning that it's not a good ai.

So, a good ai should build nothing but resources?
--

That's what the ai in Cavedog's v3.1 patch seems to do... ;)

But that doesn't work either, because it's very hard to attack the enemy with solar panels, metal extractors, and construction units. The ai must slow down its rate of growth to build defensive and offensive units as well. A good ai must use its resources wisely!

Obviously wasted resources are bad?

If an ai is wasting metal, that's part of a potential attack unit that *COULD* have been made to attack the enemy. If an ai is wasting lots of energy (like +200 energy a second or more), that *COULD* have been turned into metal makers that *COULD* make the metal to make a potential attack unit that *COULD* have been made to attack the enemy. Even having a construction unit or factory not doing anything is wasteful - because if they weren't needed, more attack units *COULD* have been made instead of those worthless units.

It's not supposed to do too much at one time, but is ALSO supposed to do everything?

Yes, and that's the problem. If the ai could build a huge super-defended base while launching massive ground attacks, large air attacks, and firing berthas and nukes - all in 20 minutes - it'd definitely be a kick-ass, uh... I meant good, ai. So, unless we make an ai that cheats, (well more than it *ALREADY* does...) we have to settle for less. Maybe it can do all that by the 1 hour mark instead of the 20 minute mark. But if it builds a tiny airforce instead, the massive ground attack, berthas, and nukes might be ready by the 40 minute mark. If nukes are left out, that time might drop to 30 minutes. And if all that is wanted is a massive ground attack, the ai can pull that off in 25 minutes. If you settle for a smaller ground attack made up of just tanks and no kbots, that just might occur in under 20 minutes. This doesn't mean that the ai won't do all those other good things, just that they won't happen until later.

So optimally, the ai should have 0 metal and 0 energy in storage?

--

You'd think so, but that sort of balancing act is both impossible (as long as the ai is still alive anyway) and unhealthy. If the ai needs its production to run constantly at peak output, all you'd have to do to drastically slow it down is kill a single solar panel. The ai would then require more energy than it was producing. Since it had no energy stored away for a rainy day, metal extractors would quit making metal and factories and construction units would be slow to complete their build tasks for lack of metal AND energy. The resulting imbalances that these cause are extremely erratic - going from 0 energy often up to max energy, and metal increasing and decreasing rapidly as factories finish units. Such complex behavior can be described as chaos theory based on the butterfly effect, and is best left for calculations on a Cray supercomputer. In short, it's too difficult to do *AND* it's not useful.

(This is starting to sound like the difficulty of riding a unicycle on a tightwire in an earthquake WHILE someone's shooting at you...)

How much resources should the ai be using to stay balanced?

--

There are no magic numbers here. But hitting 0 metal isn't good and hitting 0 energy is MUCH worse.

Early on, the ai's metal should rapidly decrease to just above 0. After that, it's personal preferance and what you want the ai to do - so long as stored metal stays just above 0 and just below maximum.

If the ai does hit 0 metal, it should not stay there very long. A example of staying at 0 metal too long is what happens when the ai tries to build multiple guardians at once - that can keep the ai from building anything else for a long, LONG time (30+ minutes even). If it were working on only 1 guardian at a time, the 1st guardian could be finished and be useable before the other guardians are built. A base with 1 finished guardian is much better than a base with 4 unfinished guardians when enemy ground units come knocking. (An unhatched egg is no chicken!)

For the same reason, energy should be used at a rate so as not to use up all the energy in storage. Later on, some energy surplus should be made to cover possible energy "spikes" caused by d-gunning, laser weapons firing (including bertha-like weapons), and metal makers turning on.

If your ai's strategy relies heavily on lasers, MUCH more excess energy is needed than if your ai is almost laser-free. Since Core leans towards lots of units with lasers that need energy, Core should produce more energy than an equivalent Arm.

In the LONG term, the ai should use about as much metal as it's making and use LESS energy than it's making.

It's like the ai is totally ignoring my ai profile!
--

Cavedog installed some fail-safe ai routines in their executable so that if (more like WHEN...) the ai runs out of metal or energy then it builds whatever metal or energy producers that it can. This is actually quite bad for us ai profilers, because while the fail-safe routines are in use the ai is ignoring the ai profile weights on units. So a low energy fail-safe tells the ai to go build some solars, windmills, or tidal generators. A low metal fail-safe tells the ai to build metal extractors or metal makers. If the ai has already reached its max limits on energy providers or metal providers, it pretty much just gets stupid if the fail-safe modes kick in.
And if the ai is out of energy, having 10+ construction units all trying to build 10+ solars at once won't help. Another problem is that 0 energy causes the metal extractors and metal makers to quit making metal but NOT quit draining energy. Once the metal reaches 0, the ai often mistakes the energy crisis for a metal crisis and builds more metal extractors (or worse yet, metal makers) to "fix" the problem, when it really needs a couple solars.

It starts building lots of solars even though it has max energy!

Another problem is the fail-safe routines don't always shut down when no longer needed, the ai may make solar after solar after solar even though it has max energy and much higher energy production than it is using. This could also mean you've weighted solars too high in your ai profile! A similar problem can happen with the metal extractors.

Why is the ai slow building a fusion reactor?

--

I believe there is a routine in the executable that checks to see if the ai has the metal and energy to build a particular unit - if not, it often doesn't build the unit -- even if it is the unit that it desperately needs. My offering of proof that such a routine exists is that the ai is "reluctant" to build high-cost items like a fusion reactor, geothermal plant, or advanced factories when it is low on resources. I haven't determined exactly how the ai decides that it doesn't have enough resources, but think it's resources it has stored plus the resources its making. Whatever calculation it uses, it doesn't seem to do a good job because it almost always ends up running out of resources. Perhaps that's because the ai doesn't consider what the other resource-consumers are doing (or WILL do!) and instead assumes that the one resource-consumer can have ALL the resources.

Despite this looking like a minor problem that can be corrected with a good ai profile, this can cause the most frustration.

How come the ai built 5 Advanced Aircraft Plants - I LIMITED it to just 3!

The ai doesn't count a unit towards its LIMIT maximum unless that unit is completed. So, if 2 advanced aircraft plants are complete, many more advanced aircraft plants may be started up to the limit of the ai's current basic construction aircraft. If the ai has 4 basic construction aircraft at the time, the probable maxumim of advanced aircraft plants is 6.

I call this the "OVERBUILD BUG", but you'd never know about it unless you're messing with the ai profiles in the first place - that's why I didn't mention this problem earlier. I personally don't see this as much of a problem, EXCEPT with the moho metal makers on nonmetal maps - 1 of them is PLENTY enough, 2 or more is disaster (that's why I weight them VERY low...).

Otherwise, having the ai overbuild its base - exceeding the normal limits - is probably ok. The ai would most likely only do that if it already had a good resource base and probably would be able to support the extra resource strain. If the ai wasn't doing well, the chances of this happening are unlikely at best - so it won't hurt the ai much then.

The difficult MATH side of ai profiles:

Now, you can plug numbers into your ai profile for weeks on end and not know why you don't get the desired results. Although the numbers the ai uses are only "suggestions" to it, over very long periods of time calculations can be done to determine the results. Even if you don't know the exact value, it's helpful to have an idea what the chances of a particular unit being made is. To do this, I introduce the term build or production probability - a percentage calculated by weights on each unit produced by a factory.

For instance, the Arm Vehicle plant has:
Construction Vehicles (weight=3 limit=4),
Flashes (weight=9 limit=no limit!),
Jeffys (weight=1 limit=0),
Samsons (weight=1.5 limit=no limit!),
and Stumpys (weight=0.5 limit=no limit!).

The total weights add up to 15, BUT since Jeffys are never made (limit=0), the actual weight total is 14. Build probability will be calculated by taking the weight of each unit and dividing it by the ACTUAL WEIGHT TOTAL.

The Construction Vehicle will have a 21.4% build probability.
The Flash will have a 64.3% build probability.
The Jeffy will have a 0% build probability, since the limit is 0 on them!
The Samson will have a 10.7% build probability.
The Stumpy will have a 3.6% build probability.

If you add up 21.4% + 64.3% + 10.7% + 3.6%, the total is 100% as it should be.

After the limit is reached on Construction Vehicles, the production probability changes. Total weight is now only 11 since Construction Vehicles are no longer a consideration.
The Flash will have a 81.8% build probability.
The Samson will have a 13.6% build probability.
The Stumpy will have a 4.5% build probability.

Adding 81.8% + 13.6% + 4.5% = 99.9% (with a rounding error to account for the missing 0.1%)
So, this also adds up to 100%.

What these numbers mean is that until the construction vehicles max out, the vehicle plant should make 6 Flashes, 2 Construction Vehicles, 1 Samson, and maybe a Stumpy - or another flash for every 10 units the vehicle plant makes.

It's very hard to tell if an ai will make more bulldogs than stumpies, because those come out of different plant types. It also gets complicated if there's 4 of one plant type but only 1 of another and 2 of a third type - to predict what the unit percent composition made by all the factories will be. However, the unit build probability for each factory type can be quite helpful in creating a more balanced attack force.

This same build probability can be applied to ALL types of construction units, even the commander. The reason to check construction unit build probabilities is an ai profile usually sucks because its RESOURCES and FACTORIES are not weighted at balanced levels. The basic construction units need the MOST careful build probability balancing. They are responsible for building much of a base.

UNFORTUNATELY, the ai fail-safe routines prevent the weights you put on the construction units from being anywhere close to accurate. This is where you have to use rediculous numbers to get semi-acceptable results: like weight 9 (or more!) on geothermals.

The ai's clockwork build patterns:

Firstly, I tell you that the ai's build pattern is random. Now, I'm telling you it's actually clockwork. When, where, and what the ai builds is based on the map, what the ai has already built, and what the ai's current resources are. Even extreme weights on units, both very low (like 0.05) and very high (like 9) are ignored by the game if any overriding condition occurs (like fail-safe ai routines). If the ai is ALLOWED to build it AND the executable tells the ai that it NEEDS to build it NOW, that's what the ai will build regardless of how seldom it's SUPPOSED to be building it.

Anyway, this is the basic pattern that the build units follow:

Commander:
1.build at least 1 metal extractor (or metal maker if not possible)
2.randomly alternates between metal producers and energy producers
3.build process becomes a matter of ability - if energy and metal are in good supply, typically factories are built, otherwise mostly resources are built. (it's only during THIS step that the commander is likely to build anything it can.)
4.After at least 1 construction unit is build, the commander MOVEs back to the "center" of the base (somewhere near where it started often)
5.Following the MOVE, the commander is on repair patrol for the remainder of the game - if there's any construction units left.
6.If there's few construction units left (and few factories), the commander resumes step 3.

Basic Construction units:
1.If resources aren't high, randomly alternates between metal producers and energy producers.
2.build process is a matter of ability - if energy and metal are in good supply, typically factories are built, otherwise mostly resources are built.
3.Some random time later, the construction unit goes on repair patrol.
4.If much of the base is destroyed, the construction unit resumes step 2.

Advanced Construction units:
1.Almost always tries to build a moho mine or moho metal maker first -- by this point in the game, the ai is almost certainly low on metal.
2.Superweapons like berthas are often built next, even in preferance over fusion reactors.
3.build process becomes random, but based slightly on need - moho mines/moho metal makers if low on metal, otherwise almost anything.
4.Some random time later, the advanced construction unit goes on repair patrol.
5.If much of the base is destroyed, the advanced construction unit resumes step 1.

How come my ARM ai *SMOKES* my CORE ai?

OR, how come my CORE ai smokes my ARM ai really bad?

ARM's units, as a whole, move quicker than similar (if there are any!) CORE units. This applies to construction units as well. One possible reason why the ARM ai seems to have an advantage over a CORE ai is CORE takes just a little longer between each building project - therefore, after 10 minutes of being a little slower each time - CORE ends up behind in production. Note: That's only my theory. :P

A simpler reason is that you assumed ARM and CORE could be told to build alike with the same results. CORE's units are often more expensive, so CORE may end up out of both energy and metal while ARM has plenty of both - despite almost identical metal/energy incomes.

If you spend more time "tweaking" one side than another, you *SHOULD* expect this result. If you play ARM more, you'd probably know what a good attack force for ARM is but might not for CORE -- so although the CORE builds lots of attacking units, because it doesn't build a good MIX of attacking units, it seems to lose more battles than it should. If you really like one side over the other, you may unknowingly "stack the deck" in its favor.

Another reason for the imbalance is what I call the "Coffee-Break" bug, where units stop moving after killing all immediate enemy units. If the attack force is under attack by a guardian or punisher, it's likely to take heavier losses if ARM than CORE because CORE's units *generally* have more armor.

Ok, I caught all of that. But my ai still seems slow to buildup!

There's something subtle going on with the ai profiles, despite their apparent simplicity. It's not so simple that you can weight flashes and vehicle plants really high and end up with a (good) flash-rushing ai. Almost every change affects something else! If vehicle plants are weighted to 9, that will mean that the construction units will build these in greater preferance over resource providers. So the ai might end up with low resources meaning it'll have very few vehicle plants built (since it had little resources to build with) - even by the 20 minute mark.

The computer isn't slowed down much by a LONG ai profile - like one over 20kb long. But it probably doesn't hurt to keep the ai profile as short as possible, leaving comments about how the ai works out of the ai profile itself. You could make an ai template laying out all the unit limits, and copy and paste from it into your ai profile. That way you don't have to memorize unit abbreviations.

Weights seem to be more effective if they're put near the top of an ai profile. Even Cavedog's ai profiles seem to follow this logic. Perhaps the ai is more likely to act on the first thing it reads in the ai profile!

testing, Testing, TESTING!

You cannot know if an ai will be any good unless you test it. Playing against it over and over again may seem like a decent testing method, but it's almost impossible to play the same way twice. If your testing is to determine if minute changes result in an improvement for the ai, that will most likely be too well hidden in random variables introduced by such a testing method. Plus, if you're playing it - you're not spending enough time watching what it is doing. On the other hand, the ai may play BETTER against another ai than a player - who won't do what it's expecting. So even if an ai is good versis other ai's, it may suck against people! Get the ai good versis another ai before testing against people, or they may just laugh at you.

Once the ai gets good versis the ai, then test on live victims - uh, I mean people... ;) Don't be surprised if a good player sends you back to the drawing board when your ai proves less successful than you hoped, and don't be afraid to ask people what the ai should've done to be even better -- even if they lost to it! BTW, treat people kindly for helping you test your ai and always try to thank them for their time. (Otherwise, it may get harder and harder to find lab rats. ;)

Generally, I test on big maps that can handle a lot of players on it at once. For my default.txt ai profile I use Greenhaven most because it is both big and loads fast.

I have quite a few ways to test the ai - and most are unbiased:

1.Rather than have multiple computers set up, I can play skirmish on my own computer with 9 AI's running around. I am allied with 4 and the other 5 are allied as well. Often I play 4 Arm vs. 5 Core, to see the disadvantages against the two. This only lets me test 1 ai at a time, but gives me a good baseline for when the ai launches an attack, how well it builds resources, how quickly it builds base defenses, and how well it fights off attacks.

2.I crossbreed ai's together - so I can play my Arm ai vs. someone else's Core ai or vice versa. This is not a very scientific test - because of the differences of ARM and CORE - but is most informative. ;)

3.I play with my ai vs. a different ai over the internet with somebody. We are teamed with an ai (typically mine, so we can see the battle through to the end :P)and stand behind the ai's base and hardly build anything - because it would increase lag. We even have cheats enabled so we can use the +VIEW # command to see how the ai's resources are doing.

4.On a Lan, I don't normally play just 1 ai vs 1 ai - I team 2 ai's of the same kind vs 2 ai's of the same kind - can't do more, because the game won't handle over 10 players (even if they're watchers they count as players). All but 1 or 2 players are watchers. If ALL players are watchers, the mission will immediately end thinking the human players have all died.

I'm doing a lot of testing, but what am I looking for to know what to change?

Running a lot of tests may help you improve an ai profile, but if you don't know what you're looking for (or AT, as the case may be) the tests are probably a waste of time. Heavy useage of the +view # cheat is a MUST - otherwise you can only guess what the energy and metal state of an ai is. Factories quit producing mobile units when less than 100 metal is in storage. If metal makers are blinking it ussually means metal consumption is above metal production. An attack force that runs around in circles seems to be the result of metal/energy shortages for that ai. An ai that does great because it always starts with 10k resources might be really wimpy with 1k resources - ai's ussualy have a resource range that is "optimal" for them, normally this is near the 10k mark. Large increases in energy consumption often means the ai either fired a bertha, turned on a moho metal maker, or started building energy-intensive unit/s. Likewise, large metal consumption increases often means something like a guardian or advanced plant is just being started. Temporary increases in metal or energy production almost always means the ai is reclaiming trees, rocks, or debris on the map. Large, sudden permenent increases in energy means a geothermal or fusion reactor was just completed. It's notable that the ai can turn on and off a few units that has an on/off switch even WHILE the unit is being built. So the moho metal maker can start providing extra metal (and tremendous energy drain) the VERY moment it is started - long before it is finished. It's one of the ways the ai cheats, but ai profiles alone won't stop that.

If you're in a skirmish game with 9 ai's (all ARM, for instance) and NONE of them build a advanced vehicle plant before the 20 minute mark - and you WANT them to, you'll probably need to increase the weight on the advanced vehicle plant. The case may be that it's because all 9 ai's stayed out of (or very low on) metal and/or energy and could have nothing to do with the weights on the advanced vehicle plant.

For the default.txt ai profile, whenever the ai builds too many solars and metal extractors before its first factory it ussually loses to one that didn't. Also, if its first factory is an aircraft plant it ussually loses as well.

Important ai information to record:
1.What the ai's overall metal/energy production for a 10-minute game was - with SPECIAL attention to how much it wasted. Resources are probably the most important - if the ai could get another 1k of metal out of the ground in 10 minutes, it'd be much better. Energy is probably in the 60k to 100k range in 10 minutes, with metal in the 4k to 7k range on a nonmetal map (Greenhaven, in this case.) Naturally, if the ai was attacked and lost outlying metal extractors its metal production would be considerably lower.
1.WHEN the ai's launched their first attack (notice I said launched instead of when the attack arrives at its destination - which varies GREATLY with the size of the map and proximity to an enemy base). An ai that can launch an attack in 5 minutes is possible - with 7 minutes still being ok, even with low resources (1k and nonmetal map). On a metal map with 10k resources, this time can shrink down to as low as 3 minutes - but 5 minutes is still more common.
2.How quickly level 2 units are added to the attack forces. Typically, this occurs in the 10 minute to 20 minute timeframe.
3.How quickly the the ai starts building level 2 and level 3 base buildings. Commonly, this is in the 10 to 30 minute timeframe.
4.How built-up the ai's base defenses were by the 10, 20, and 30 minute mark - and even later. The ai can be made to build guardians and sentinels ASAP, but that will badly hurt resource production.
6.How quickly can the ai reach the unit max. For a unit max of 250, the winning ai in a test can reach that amount in as little as 25 minutes - even on a nonmetal map. More commonly though, unit max is reached later - or even never if you set your ai profile limits very low. Reaching unit maximum too early can result in the ai having lots of level 1 units but few level 2 or level 3 units. Just how GOOD is 100+ flash tanks anyway? Wouldn't 30 flash tanks (or fewer) at a time be just as effective?
7.At what point does the winning ai manage to reach a mature level 3 economy - with redundant factories, fusions, base defenses, and metal producers. This is the point where even nuking the ai may not slow it down -- if it was at unit max, nuking it will give it more unit slots to build more mobile attack units! The earliest I've seen an ai reach this point was just under the 30 minute mark, but even the 1 HOUR mark is acceptable. If the ai doesn't use nuke silos, lots of laser towers, berthas, or moho metal makers it doesn't need 1000+ energy production to produce good ground-force attacks. Metal is vital, but if the ai uses cheaper but effective units the lack of resources will go entirely hidden from whoever's on the RECEIVING end. ;)
8.How early does the ai get a "STEAMROLLER" attack force that isn't stopped even by base defenses like guardians and sentinels. The attack force should be resupplied with new units quickly (like 1 every 15 seconds) to be effective in the meat-grinder of close combat. Often, it's not the SIZE of the attack force that causes it to win so much as how long its units last and how quickly they are replaced. ARM should have quicker unit replacements than CORE simply because ARM's units generally have lower armor (and cost less) and tend to die quicker.
9.What's missing? What could the ai add to its base or attack force that would save the day.
10.What isn't helping as much as it should? Maybe lowering the weight and limit on that unit will make the ai more effective. Try eliminating that unit and see if the ai is better without it.

It's hard to tell if an ai profile is improving just by testing it against itself. So, test one side at a time against the other side WITHOUT changing the other side. This can be done by copying and pasting all ARM entries from 1 ai and all CORE entries from another ai into a single ai file. It really pads the ego to watch your CORE ai totally mow through Cavedog's original (v3.1 patch even) ARM ai. Whoever said CORE can't rush effectively probably hasn't seen a Storm and/or Instigator rush! If your 4 CORE ai's can kill 5 original ARM ai's in under 20 minutes on Greenhaven with only 1k resources, consider your ai at least decent! (Mine can *sometimes* do that.) BTW, It's wise to team up with the (probable) winning side.

What kind of ai profile *DOES* a map need?

Most maps fall under the standard general categories of Default, SeaBattle, AirBattle, and Metal - but some need specific ai profiles made just for them. An extreme example is an all-water map with very little land. Seabattle assumes that there is land to build a good sized land base, particularly solars, metal extractors, hovercraft and aircraft plants. Lacking that, the ai will build very slowly - if at all - and will be easily beaten. The basic ai profiles categories are too vague to cover many types of maps. So things to consider when making an ai profile are:
1.How large is the map? (can't flash rush effectively on a 30 x 30 land map)
2.How much water (by percent) is the map? (possibly a naval ai map?)
3.Is the land and water alternating making either form of attack difficult or impossible?
4.How plentiful is metal on this map?
5.Is there any geothermal vents on the map?
6.How flat/hilly is the map?
7.Are trees so thick that they must be reclaimed to have room to build?
8.Is there lots of reclaimable rocks around?
9.Does the map have consistantly high winds or gusty winds?
10.Because of some feature on the map, does one particular unit (or type) have a significant advantage over the others? (such as narrow land passes, steep slopes, or thick trees)

1.An example of a large map that isn't a typical default ai profile is Greenhaven. It's TOO big for a flash rush to reach an enemy base early enough to make winning easy - not in a 1 vs 1 game, anyway. Such a map may require the ai to build slightly more base defenses than usual and rely on long-ranged attack types (Merls, Berthas, aircraft) to effectively destroy the enemy base.
2.Gods of War is a good example of a some-land, lot-water map that's well suited for a naval ai.
3.The best examples of this is Over Crude Water (a metal map) or Evad River Confluence. Both maps have water acting as a barrier to large land attacks. Neither a land attack or naval attack can easily reach the enemy base. This forces relying on hovercraft and aircraft to strike the enemy base. So they're both air battle ai's.
4.Some maps have so little metal - such as Painted Desert - that the ai either must spread out all over the map or build metal makers. And the ai cannot manage metal makers very well, always wanting to build way more metal makers than it has energy to run. Also, its construction units will suicidally wander into enemy bases trying to build a metal extractor on unused metal spots.
5.Geothermal plants are vital stepping stones to getting fusion reactors for players, but for the ai who shouldn't build such an energy-hungry base they are even MORE vital. An ai can have a large base totaling 50 buildings and only need 15 solars and 2 geo's to run it. On nonmetal maps, where only 1 geo can be built on a vent, the ai should have a max limit of 2 to 6 geothermal plants (depending on the total number of vents on the map) so that it doesn't wastefully and suicidally send its construction units into the enemy territory to build a geo on thermal vents there. On metal maps, the max limit on geos can be as high as 10 without any problems, because up to 4 geothermal plants can be built on each vent.
6.A very hilly map makes for lots of killzones and choke points that by the middle of the game render ground forces useless. Plus a hilly map may have very little room to build a base. A few short-ranged LLT's and guardians are best as base defenses because line-of-sight is so restrictive. The guardians can shoot over some of the hills, and the LLT's can guard passes and enterances to bases.
7.Maps with wall-to-wall trees make big bulky units less useful, so often the level 1 kbots and aircraft are the only units that can get around effectively.
8.Unless there's so many rocks that they are in the way, this has little effect on an ai. However once the commander goes into repair and reclaim patrol mode, the rocks may be the only thing that keeps the ai's factories producing more units.
9.Wind generators should be used instead of solars if the wind is consistantly strong, or half solars half wind generators if the wind gusts are strong enough (like +20 or more energy).
10.Metal Isles has large islands with very tall defensive walls. Although a huge naval force may take control of the water around the island, it will be unable to shoot into the middle of the island with cruisers and battleships because of the size of the island and the high walls. Missile frigates are more useful for attacking such bases, but cannot be made the bulk of the naval force or it will surely lose to a naval force made primarily of cruisers and battleships. Also, since the map is rather large, significant amounts of anti-aircraft ships are needed with the naval force.
The flash tank excels on Metal Heck - it is fast and cheap, allowing for early base attacks. Plus it is small, making it hard to hit and better able to move around debris.

About MY ai...

My ai has no balance of base defense vs attacking force - it is almost pure attacking force. It builds a token base defense consisting of a couple berthas, a very few guardians, some flakkers, and quite a few defenders. Only the defenders are built early on - they are a holdover from the long-ago popular strat of c-napping the commander before he could build much. I figure defenders are cheap enough that they won't slow production down to a crawl while still providing some defense. It might seem that the base is very vulnerable to an early rush, but that's probably when it's the most densely defended by mobile units. Later on, when the ai's forces are attacking elsewhere the ai's base can be pretty easily stormed with ground forces.

Getting a well-defended base early on is of low priority for an ai. To do so will slow or even stop its exponential growth for many minutes. Let the mobile units defend the base early on, and let the construction units build good base defenses only if they have nothing better to do.

My ai's weights go from 0.05 to 9, where a weight of 1 is assumed to be average. A weight of 9 is used to almost force the ai to build that unit instead of anything else and build it quick. A weight of 0.05 is for stuff I don't want the ai to build until AFTER other things are built. When the unit LIMITS are reached for high-weight (1-9) items, then and only then should the very low-weight (0.05-0.2) items be built. I tried a weight of 0.01 for units, but they won't get built at all - the ai rounds weights that low down to 0. The same weight and limit tricks can be used on attacking units to assure that you get frontline units quickly but not too many - and that you later get supporting units in decent quantity once the ai's attack force is large enough to defend them. An example of this is Flashes for frontline units and Merls for supporting units. Flashes are good, but too many just get in the way of one another. Merls are also good, but putting them on the frontline will make them seem useless.

Putting an upper limit on every base building is a must, otherwise once the ai reaches unit max and after each attack the ai will replace some or even all of its attacking units that got killed with base buildings. This results in the ai's attacking force growing smaller and smaller. At that point, nuking some of the ai's base literally pisses it off because it is freed up to make more attacking units! For the same reason, even the attacking units themselves need an upper limit to prevent overpopulation. More than 30 flash tanks just get in each other's way being unable to fire on targets. For my ai, I presume that the game's unit max is somewhere in the 150 to 300 range. If the unit max is lower, the ai will become pacifistic (not attacking with ground forces) much earlier. On the other hand, if the unit max was 500, the ai would never really utilize the extra unit slots to make its attack force OR base huge.

My rule of thumb for the ai is simple - for ordinary nonmetal maps, the default.txt ai will suffice. But if there's anything unusual in the map, the ai needs to be modifed to take advantage of it - be it high winds, narrow passes, lots of water, scarcity of metal, even a change in unit max. Any map can benifit from using a modified ai profile instead of the original ai profiles in TA:CC, but some maps almost demand a special ai profile for the ai to be effective at all!

TA Weapons Creation

[image: image57.png]

unknown

I like to explain how a weapon file in TA is build up, and I hope it is of any use to any new unit designer. I took all of my information from the original Cave Dog weapons file.

The actual weapon file in the weapon directory of the unit (ufo)

Weapons.tdf - Here you place the miscellaneous weapon types

Types of weapons

There are different weapons but any of the weapons must fit in one of these basic categories.

	ballistic
	Weapon is fired according to a ballistic path using gravity

	lineofsight
	Weapon is fired in a straight line, gravity does not effect path

	dropped
	Weapon is dropped in order to use it, typically a bomb but could be a chemical

Important values and behaviour of the weapon.

	ID
	A unique value in the range 0-255 which identifies the weapon

	range
	Coverage in pixels what the protection umbrella is for weapons that shoot other weapons

	noexplode
	No explosion when weapon impacts target

	reloadtime
	Seconds between shots (floating point allowed)

	energypershot
	Energy consumed per shot, most use none

	weapontimer
	How long weapon is active in seconds (floating point allowed), trajectory weapons use 0 so it is calculated

	noautorange
	When set the weapon will not detonate at range automatically, used mostly for heavy rockets

	weaponvelocity
	Maximum attainable weapon veolocity in pixels/second

	weaponacceleration
	Expressed in pixels/second/second

	turnrate
	Used for guided weapons, is in angular units (0-64k)/second

	areaofeffect
	The total area that receives that damage, one impact per unit in the area

	edgeeffectiveness
	The percentage (1.0 = 100%) of the damage that is inflicted at the edge of the area of effect. Used for drop-off

Weapon Characteristics

	turret
	Weapon must be deployed from a turret with a 360 deg rotation and pitch

	firestarter
	Weapon will cause fires, expressed as a %, where 100% guarantees a fire

	unitsonly
	Weapon will only detonate on enemy units as opposed to obstructing terrain

	burst
	How many repeat times a weapon fires in one burst, ie. Flamethrower

	burstrate
	The time delay when in burst mode between events

	sprayangle
	Maximum deviation from the straight line to the target the weapon strays, used for burst weapons

	randomdecay
	Maximum time delta that burst weapon will randomly decay at end of path

	groundbounce
	Weapon will not detonate with the ground but instead bounce

	flighttime
	The time the unit will fly for after it enters the second phase of operation, used for starburst missiles

	selfprop
	Weapon is self propelled with a burn time described by flighttime

	twophase
	Indicates weapon operates in two phases

	weapontype2
	Describes another weapon that the weapon turns into in the second phase

	guidance
	Indicates that weapon is guided and uses the turn rate above to track enemy unit

	tracks
	When set the weapon will track a moving target after a weapon conversion

	waterweapon
	Weapon is meant to travel through water

	burnblow
	Weapon will detonate when it comes to the end of its range

	accuracy
	Amount of accuracy in 64K deg that weapon is good for, 0=100%

	tolerance
	Amount of accuracy weapon will use when aiming, most are default 0

	aimrate
	How fast (on average) the weapon aims, in 64K deg / sec. Used by UnitView.

	startvelocity
	Weapon will start at this velocity instead of 0

	minbarrelangle
	The minimum angle (in degrees) the barrels can point, used in ballistic calculations

Special weapon stuff

	paralyzer
	Weapon will stun the enemy for a length of time described in the damage field, time=ticks.

Looks of a weapon

	model
	3D model to use as this weapon

	color
	Color of beam weapon from the game palette

	color2
	Color to use on the beam weapon to make it looks better and cooler

	smoketrail
	Indicates whether or not a weapon will emit a smoke trail

	smokedelay
	Smoke dispersal interval expressed in seconds

	startsmoke
	Draw a puff of smoke when the weapon fires

	endsmoke
	Draw a puff of smoke when weapon terminates

	rendertype
	Type of rendering system to use, 3D model, bitmap, etc.

	beamweapon
	Weapon is a straight beam weapon like a laser

	explosiongaf
	.GAF file that the explosion art is in

	explosionart
	name of animation sequence for explosion

	waterexplosiongaf
	.GAF file that the water explosion art is in

	waterexplosionart
	name of animation sequence for water explosion

	propeller
	if the model has a propeller that spins

The sounds it makes

	soundstart
	Sound to make when the weapon fires

	soundhit
	Sound to make when the weapon detonates (if the weapon detonates)

	soundwater
	Sound to make when the weapon hits the water

	soundtrigger
	Make the weapon sound when the weapon fires in burst mode

Weapon Controls

	commandfire
	This weapon will need to be expressly fired by the user each and every time it is used, i.e. a Dgun

Needed resources

Here you describe the amount of metal and energy it takes to fire the weapon if applicable

	energy
	Amount of energy needed

	metal
	Amount of metal needed

Total Annihilation: Kingdoms

[image: image58.png]

Directory Structure and File Formats

[image: image59.png]

Directory Structure

[image: image60.png]

D\CAVEDOG

│ 00000407.256

│ 00000409.256

│ 0000040a.256

│ 0000040c.256

│ 00000410.256

│ binkw32.dll

│ boneyards.hpi

│ boneyards2.hpi

│ bymaia.dll

│ Cartographer.exe

│ ChooseRenderer.exe

│ clcd16.dll

│ clcd32.dll

│ clokspl.exe

│ data.hpi

│ dplayerx.dll

│ drvmgt.dll

│ english.hpi

│ INSTALL.LOG

│ Jersey.hpi

│ Keys.TDF

│ kingdoms.esk

│ Kingdoms.exe

│ KINGDOMS.icd

│ KINGDOMS.ID

│ Kingdoms.key

│ kingdoms.mmz

│ maps.hpi

│ missions.hpi

│ MP3DEC.ASI

│ mss16.dll

│ mss32.dll

│ mssb16.tsk

│ patchw32.dll

│ ReadMe.htm

│ ReadMe.txt

│ RendererHelp.txt

│ restart.exe

│ Rover.dll

│ secdrv.sys

│ sections.hpi

│ Startup.tdf

│ terrain.hpi

│ Uninst.isu

│ upgrade.dll

│ V2Rocket.hpi

│ v3readme.txt

│ V3Rocket.hpi

│

├───Boneyards

│ │ server.byd

│ │

│ ├───Help

│ │ Help.def

│ │ Help1.htm

│ │ Help10.htm

│ │ Help11.htm

│ │ Help12.htm

│ │ Help13.htm

│ │ Help14.htm

│ │ Help144.htm

│ │ Help146.htm

│ │ Help147.htm

│ │ Help15.htm

│ │ Help16.htm

│ │ Help17.htm

│ │ Help18.htm

│ │ Help19.htm

│ │ Help20.htm

│ │ Help21.htm

│ │ Help22.htm

│ │ Help23.htm

│ │ Help24.htm

│ │ Help25.htm

│ │ Help26.htm

│ │ Help31.htm

│ │ Help36.htm

│ │ Help37.htm

│ │ Help39.htm

│ │ Help4.htm

│ │ Help41.htm

│ │ Help42.htm

│ │ Help43.htm

│ │ Help44.htm

│ │ Help5.htm

│ │ Help6.htm

│ │ Help7.htm

│ │ Help8.htm

│ │ Help9.htm

│ │ __Help.htm

│ │

│ ├───Images

│ │ a1.png

│ │ a2.png

│ │ a3.png

│ │ a4.png

│ │ a5.png

│ │ a6.png

│ │ a7.png

│ │ a8.png

│ │ ButtonBattles.png

│ │ ButtonBoneyards.png

│ │ ButtonCancel.png

│ │ ButtonCrusades.png

│ │ ButtonEditHouse.png

│ │ ButtonEditProfile.png

│ │ ButtonGathering.png

│ │ ButtonHelp.png

│ │ ButtonHostBattle.png

│ │ ButtonHostGathering.png

│ │ ButtonHouse.png

│ │ ButtonLadder.png

│ │ ButtonLocator.png

│ │ ButtonMetaGame.png

│ │ ButtonNews.png

│ │ ButtonNewsNInfo.png

│ │ ButtonOK.png

│ │ ButtonPagePeople.png

│ │ ButtonPeople.png

│ │ ButtonProfile.png

│ │ ButtonQuickplay.png

│ │ ButtonRegister.png

│ │ ButtonSearch.png

│ │ ButtonWarRoom.png

│ │ CrusadesMap.png

│ │ CrusadesRoom.png

│ │ CrusadesRoomButton.png

│ │ end_k2.png

│ │ Help.png

│ │ Login.png

│ │ MovieButton.png

│ │ NnIEditProfile.png

│ │ NnIEditRegister.png

│ │ NnILadders.png

│ │ NnINews.png

│ │ NnIProfile.png

│ │ NnISearchLadder.png

│ │ NnISearchNews.png

│ │ OverviewButton.png

│ │ PlayerPage.png

│ │ PlayerPageSent.png

│ │ PlayerProfile.png

│ │ ReconButton.png

│ │ Register.png

│ │ SearchHelp.png

│ │ SystemMessage.png

│ │ t1.png

│ │ t2.png

│ │ t3.png

│ │ t4.png

│ │ t5.png

│ │ t6.png

│ │ t7.png

│ │ t8.png

│ │ Update.png

│ │ v1.png

│ │ v2.png

│ │ v3.png

│ │ v4.png

│ │ v5.png

│ │ v6.png

│ │ v7.png

│ │ v8.png

│ │ WarBattle.png

│ │ WarBattleForming.png

│ │ WarBattleInProgress.png

│ │ WarCreateBattle.png

│ │ WarCreateGath.png

│ │ WarGath.png

│ │ WarGatheringInfo.png

│ │ WarLocator.png

│ │ WarPagePeople.png

│ │ WarPeople.png

│ │ WarPlayerInfo.png

│ │ WarRoom.png

│ │ WarSearchLocator.png

│ │ z1.png

│ │ z2.png

│ │ z3.png

│ │ z4.png

│ │ z5.png

│ │ z6.png

│ │ z7.png

│ │ z8.png

│ │

│ ├───Ladders

│ │ Ladders.def

│ │

│ ├───Metagame

│ │ Aramon.png

│ │ aramonShield.png

│ │ Borders.png

│ │ ContestedMap.png

│ │ CrusadeProf1.png

│ │ CrusadeProf2.png

│ │ CrusadesStandard1.png

│ │ CrusadesStandard2.png

│ │ Darien.def

│ │ HonorMap.png

│ │ MetaMask.png

│ │ PreInit.jje

│ │ Taros.png

│ │ tarosShield.png

│ │ TerrorMap.png

│ │ Veruna.png

│ │ wdhit.jje

│ │ Zhon.png

│ │

│ ├───Profile

│ │ Achievements.htm

│ │ MGPersonal.htm

│ │ MGPersonal_NoName.htm

│ │ MGProfile.def

│ │ personal.htm

│ │ Personal_NoName.htm

│ │ Profile.def

│ │ TAK_CRUSADES.htm

│ │ TAK_CRUSADES_NOJOIN.htm

│ │ TAK_DUEL.htm

│ │ TAK_history.htm

│ │ TAK_NATIONS.htm

│ │ TAK_NATIONS_ARAMON.htm

│ │ TAK_NATIONS_TAROS.htm

│ │ TAK_NATIONS_VERUNA.htm

│ │ TAK_NATIONS_ZHON.htm

│ │ TAK_overview.htm

│ │ Tak_rec0.htm

│ │ TAK_reconhistory.htm

│ │ TAK_WTA.htm

│ │

│ └───Templates

│ gameform.htm

│ gameprog.htm

│ gathering.htm

│ MGgameform.htm

│ MGgameprog.htm

│

├───docs

│ AFlyBuild.txt

│ ASiege.txt

│ TKamRat.txt

│ TRictus.txt

│ VLightHs.txt

│ ZSWolf.txt

│

├───GC

│ │ Free Month of Internet .lnk

│ │ Frontier.ico

│ │ index.html

│ │ Left.html

│ │ Main.html

│ │ Top-Left.html

│ │ Top-Right.html

│ │

│ └───images

│ ├───backgrounds

│ │ Back00.jpg

│ │ Left.jpg

│ │ Top-Left.jpg

│ │

│ ├───banners

│ │ FGCLogo.gif

│ │

│ └───buttons

│ Dev-O.gif

│ Dev-U.gif

│ Fgc-O.gif

│ Fgc-U.gif

│ Gsn-O.gif

│ Gsn-U.gif

│ Pl-O.gif

│ Pl-U.gif

│ Tak-O.gif

│ Tak-U.gif

│

├───Maps

├───Movies

│ └───Gui

│ GIRL4.BIK

│ GIRL5.BIK

│ GIRL6.BIK

│ GIRL7.BIK

│ KNIGHT4.BIK

│ KNIGHT5.BIK

│ KNIGHT6.BIK

│ KNIGHT7.BIK

│ Loadscreen.bik

│ machine4.bik

│ machine5.bik

│ machine6.bik

│ machine7.bik

│ SNORT4.BIK

│ SNORT5.BIK

│ SNORT6.BIK

│ SNORT7.BIK

│

├───MPlayer

│ │ mplaynow.exe

│ │ MPLAYNOW.INI

│ │ Readme.doc

│ │

│ └───MPLAYNOW

│ │ MPNETSUE.EXE

│ │ RNAPH.DLL

│ │ URL.DLL

│ │

│ └───MPLAYER

│ setup.exe

│

└───Music

 track1.wav

 track12.wav

 track13.wav

 track14.wav

 track15.wav

 track16.wav

 track17.wav

 track20.wav

 track3.wav

 track4.wav

 track5.wav

 track6.wav

 track7.wav

 track8.wav

 track9.wav
V2 Rocket.hpi Contents

D:\V2ROCKET.HPI

├───Anims

│ TitleScreen.jpg

│ TitleScreen.tsf

│

├───Guis

│ Mainmenu1.gui

│ VisualOptions1.gui

│

├───maps

│ Abnar's Terrace.crt

│ Abnar's Terrace.ota

│ Abnar's Terrace.tnt

│ Abnar's Terrace.txt

│ Loch Brynn.crt

│ Loch Brynn.ota

│ Loch Brynn.tnt

│ Loch Brynn.txt

│

├───Objects3D

│ verball.3do

│

├───Scripts

│ VERBALL.COB

│

├───translate

│ abnar's terrace.tdf

│ loch brynn.tdf

│

└───units

 ARAAT.FBI

 ARACAN.FBI

 arapult.fbi

 LIFDEER.FBI

 Lifdeer2.fbi

 tarship.fbi

 VERBALL.FBI

 VERGOD.FBI

 VERMORT.FBI

 VERPULT.FBI

 ZONFLIES.FBI

 ZONGOD.FBI

V3Rocket.hpi Contents

V3ROCKET.HPI

└───ai

│ default.txt

│

└───anims

│ │ bigsmoke_1555.taf

│ │ bigsmoke_4444.taf

│ │ bluefire_1555.taf

│ │ bluefire_4444.taf

│ │ dieselflame_1555.taf

│ │ dieselflame_4444.taf

│ │ manabomb_1555.taf

│ │ manabomb_4444.taf

│ │ steam_1555.taf

│ │ steam_4444.taf

│ │ titlescreen.jpg

│ │ titlescreen.tsf

│ │

│ └───BuildPic

│ │ Arafly.jpg

│ │ Aragren.jpg

│ │ ARASIEGE.JPG

│ │ aratrans.jpg

│ │ tarang.jpg

│ │ TARCAN.JPG

│ │ TARHAND.JPG

│ │ Tarkam.jpg

│ │ verbal.jpg

│ │ vercen.jpg

│ │ verlight.jpg

│ │ vermer.jpg

│ │ zonamoe.jpg

│ │ zonbar.jpg

│ │ zonswamp.JPG

│ │ Zonwolf.jpg

│ │

│ └───gafs for release

│ │ loadingc.pcx

│ │

│ └───WeaponPic

│ deathswordpu.jpg

│ deathswordsb.jpg

│ deathswordsbh.jpg

│ FireBallGPU.jpg

│ FireBallGSB.jpg

│ FireBallGSBh.jpg

│ GrenadeConcussionPU.jpg

│ GrenadeConcussionSB.jpg

│ GrenadeConcussionSBh.jpg

│ GrenadeExplosivePU.jpg

│ GrenadeExplosiveSB.jpg

│ GrenadeExplosiveSBh.jpg

│ GrenadeIncendiaryPU.jpg

│ GrenadeIncendiarySB.jpg

│ GrenadeIncendiarySBh.jpg

│ LightHouseStunPU.jpg

│ LightHouseStunSB.jpg

│ LightHouseStunSBh.jpg

│

└───bitmaps

│ initscreen.pcx

│

└───CanBuild

│ └───arabuild

│ │ araat.tdf

│ │ aracastl.tdf

│ │ arakeep.tdf

│ │ aralode.tdf

│ │ arassh.tdf

│ │ aratre.tdf

│ │ arawall.tdf

│ │ arawar.tdf

│ │

│ └───AraCastl

│ │ AraBow.tdf

│ │ AraBroad.tdf

│ │ AraBuild.tdf

│ │ AraCan.tdf

│ │ AraPal.tdf

│ │ AraPries.tdf

│ │ AraSiege.tdf

│ │ AraSmith.tdf

│ │ AraSpy.tdf

│ │

│ └───AraFly

│ │ AraAt.tdf

│ │ AraCastl.tdf

│ │ AraKeep.tdf

│ │ AraLode.tdf

│ │ Arassh.tdf

│ │ AraTre.tdf

│ │ AraWall.tdf

│ │ ARAWAR.TDF

│ │

│ └───arakeep

│ │ araarch.tdf

│ │ arabuild.tdf

│ │ arafast.tdf

│ │ araknigh.tdf

│ │ arapult.tdf

│ │ arasword.tdf

│ │

│ └───araking

│ │ araat.tdf

│ │ aragod.tdf

│ │ arakeep.tdf

│ │ aralode.tdf

│ │ arangate.tdf

│ │ aratrans.tdf

│ │ arawall.tdf

│ │

│ └───AraPries

│ │ AraDrag.tdf

│ │ AraFly.tdf

│ │ ARAGREN.TDF

│ │ AraMana.tdf

│ │

│ └───tarcastl

│ │ tarblack.tdf

│ │ targarg.tdf

│ │ tarship.tdf

│ │ tartb.tdf

│ │ tartroop.tdf

│ │ tarzom.tdf

│ │

│ └───TarDung

│ │ TarArch.tdf

│ │ TarBeak.tdf

│ │ TarCan.tdf

│ │ TarFire.tdf

│ │ TarHand.tdf

│ │ TarTb.tdf

│ │ TarWitch.tdf

│ │

│ └───TarHell

│ │ TarDemon.tdf

│ │ TARKAM.TDF

│ │ TarKnigh.tdf

│ │ TarLich.tdf

│ │ TarMage.tdf

│ │ TarMind.tdf

│ │ TarPries.tdf

│ │ TarSpout.tdf

│ │ TarTb.tdf

│ │

│ └───tarnecro

│ │ tarcage.tdf

│ │ tarcastl.tdf

│ │ tardung.tdf

│ │ targod.tdf

│ │ tarhell.tdf

│ │ tarlode.tdf

│ │ tarngate.tdf

│ │ tarwall.tdf

│ │

│ └───tarprie2

│ │ npctemp.tdf

│ │

│ └───tarpries

│ │ tarang.tdf

│ │ tardrag.tdf

│ │ tarmana.tdf

│ │

│ └───tartb

│ │ tarcage.tdf

│ │ tarcastl.tdf

│ │ tardung.tdf

│ │ tarhell.tdf

│ │ tarlode.tdf

│ │ tarsh.tdf

│ │ tarwall.tdf

│ │

│ └───verasy

│ │ verflag.tdf

│ │ verharp.tdf

│ │ verman.tdf

│ │ verscout.tdf

│ │ vertrans.tdf

│ │ vertre.tdf

│ │

│ └───vercastl

│ │ verball.tdf

│ │ verbers.tdf

│ │ vercen.tdf

│ │ vercrus.tdf

│ │ verknigh.tdf

│ │ verliege.tdf

│ │ verlihr.tdf

│ │ vermusk.tdf

│ │

│ └───verflag

│ │ verasy.tdf

│ │ verfltwr.tdf

│ │ verkeep.tdf

│ │ verlode.tdf

│ │

│ └───VerKeep

│ │ VerArch.tdf

│ │ VerLiege.tdf

│ │ VerMer.tdf

│ │ Verpar.tdf

│ │ VerPult.tdf

│ │ VerSword.tdf

│ │

│ └───VerLiege

│ │ VERASY.TDF

│ │ VerAt.TDF

│ │ VerCastl.TDF

│ │ VerKeep.TDF

│ │ VerLight.tdf

│ │ VerLode.TDF

│ │ VerMort.tdf

│ │ VerTower.TDF

│ │ VerWall.tdf

│ │

│ └───verlihr

│ │ verbal.tdf

│ │ verdrag.tdf

│ │ vermana.tdf

│ │ verpill.tdf

│ │

│ └───vermage

│ │ verasy.tdf

│ │ verat.tdf

│ │ vergod.tdf

│ │ verkeep.tdf

│ │ verlode.tdf

│ │ verngate.tdf

│ │ verwall.tdf

│ │

│ └───ZonHand

│ │ ZonBat.tdf

│ │ ZonFire.tdf

│ │ ZonGob.tdf

│ │ ZonLode.tdf

│ │ ZonSwamp.TDF

│ │ ZONTER.TDF

│ │ ZonTrain.tdf

│ │ ZonTroll.tdf

│ │

│ └───zonhunt

│ │ zonfire.tdf

│ │ zonglyph.tdf

│ │ zongod.tdf

│ │ zonhand.tdf

│ │ zonlode.tdf

│ │

│ └───zonhurt

│ │ zonfire.tdf

│ │ zonglyph.tdf

│ │ zonhand.tdf

│ │ zonlode.tdf

│ │

│ └───zonlord

│ │ zondrake.tdf

│ │ zonflies.tdf

│ │ zongiant.tdf

│ │ zonlode.tdf

│ │ zonorc.tdf

│ │ zonroc.tdf

│ │ zonsham.tdf

│ │ zontrain.tdf

│ │

│ └───zonsham

│ │ zonamoe.tdf

│ │ zonbar.tdf

│ │ zondrag.tdf

│ │ zonmana.tdf

│ │

│ └───ZonTrain

│ ZONBASIL.TDF

│ ZONGLYPH.TDF

│ ZONGRYP.TDF

│ ZONHAND.TDF

│ ZONHARP.TDF

│ ZONKRAK.TDF

│ ZONLODE.TDF

│ ZONLORD.TDF

│ ZONWOLF.TDF

│

└───CanBuildCB

│ └───AraBuild

│ │ AraAt.tdf

│ │ AraCastl.tdf

│ │ AraKeep.tdf

│ │ ARALODE.TDF

│ │ ARASSH.TDF

│ │ ARATRE.TDF

│ │ AraWall.tdf

│ │ ARAWAR.TDF

│ │

│ └───AraCastl

│ │ AraBow.tdf

│ │ ARABROAD.TDF

│ │ AraBuild.tdf

│ │ ARACAN.TDF

│ │ AraGren.tdf

│ │ ARAPAL.TDF

│ │ AraPries.tdf

│ │ AraSiege.tdf

│ │ ARASMITH.TDF

│ │ ARASPY.TDF

│ │

│ └───AraFly

│ │ ARAAT.TDF

│ │ ARACASTL.TDF

│ │ ARAKEEP.TDF

│ │ ARALODE.TDF

│ │ AraSiege.tdf

│ │ ARASSH.TDF

│ │ ARATRE.TDF

│ │ ARAWALL.TDF

│ │ ARAWAR.TDF

│ │

│ └───AraKeep

│ │ ARAARCH.TDF

│ │ AraBuild.tdf

│ │ AraFast.tdf

│ │ AraKnigh.tdf

│ │ AraPult.tdf

│ │ Arasword.tdf

│ │

│ └───AraKing

│ │ ARAAT.TDF

│ │ ARAKEEP.TDF

│ │ AraLode.TDF

│ │ AraNGate.TDF

│ │ ARATRANS.TDF

│ │ AraWall.TDF

│ │

│ └───AraPries

│ │ AraDrag.tdf

│ │ AraFly.tdf

│ │ AraGod.TDF

│ │ AraMana.tdf

│ │

│ └───AraTrans

│ │ ARAARCH.TDF

│ │ AraFast.tdf

│ │ Arasword.tdf

│ │

│ └───TarCastl

│ │ TARBLACK.TDF

│ │ TarGarg.tdf

│ │ TARSHIP.TDF

│ │ TarTb.tdf

│ │ TARTROOP.TDF

│ │ TarZom.tdf

│ │

│ └───TarDung

│ │ TarArch.tdf

│ │ TARBEAK.TDF

│ │ TarCan.tdf

│ │ TarFire.tdf

│ │ TarHand.tdf

│ │ TarTb.tdf

│ │ TARWITCH.TDF

│ │

│ └───TarHell

│ │ TARDEMON.TDF

│ │ TARKAM.TDF

│ │ TarKnigh.tdf

│ │ TARLICH.TDF

│ │ TARMAGE.TDF

│ │ TARMIND.TDF

│ │ TarPries.tdf

│ │ TARSPOUT.TDF

│ │ TarTb.tdf

│ │

│ └───TarNecro

│ │ TarCage.tdf

│ │ TarCastl.tdf

│ │ TarDung.tdf

│ │ TarHell.tdf

│ │ TARLODE.TDF

│ │ TARNGATE.TDF

│ │ TarWall.tdf

│ │

│ └───TarPrie2

│ │ NPCTEMP.TDF

│ │

│ └───TarPries

│ │ TARANG.TDF

│ │ TarDrag.tdf

│ │ TARGOD.TDF

│ │ TarMana.tdf

│ │

│ └───TarTb

│ │ TarCage.tdf

│ │ TarCastl.tdf

│ │ TarDung.tdf

│ │ TarHell.tdf

│ │ TarLode.tdf

│ │ TarSh.tdf

│ │ TarWall.tdf

│ │

│ └───VERASY

│ │ VerFlag.tdf

│ │ VerHarp.tdf

│ │ VERMAN.TDF

│ │ VERSCOUT.TDF

│ │ VERTRANS.TDF

│ │ VERTRE.TDF

│ │

│ └───VerCastl

│ │ VERBAL.TDF

│ │ VERBALL.TDF

│ │ VERBERS.TDF

│ │ VERCEN.TDF

│ │ VERCRUS.TDF

│ │ VERKNIGH.TDF

│ │ VerLiege.tdf

│ │ VerLihr.tdf

│ │ VERMUSK.TDF

│ │

│ └───VerFlag

│ │ VERASY.TDF

│ │ VERFLTWR.TDF

│ │ VerKeep.tdf

│ │ VerLight.tdf

│ │ Verlode.tdf

│ │

│ └───VerKeep

│ │ VERARCH.TDF

│ │ VerLiege.tdf

│ │ VerMer.tdf

│ │ Verpar.tdf

│ │ VerPult.tdf

│ │ VERSWORD.TDF

│ │

│ └───VerLiege

│ │ VERASY.TDF

│ │ VERAT.TDF

│ │ VerCastl.TDF

│ │ VerKeep.TDF

│ │ VerLight.tdf

│ │ VERLODE.TDF

│ │ VERMORT.TDF

│ │ VerTower.TDF

│ │ VerWall.tdf

│ │

│ └───VerLihr

│ │ VerDrag.tdf

│ │ VERGOD.TDF

│ │ VerMana.tdf

│ │ VERPILL.TDF

│ │

│ └───VerMage

│ │ VERASY.TDF

│ │ VERAT.TDF

│ │ VerKeep.tdf

│ │ VERLODE.TDF

│ │ VERNGATE.TDF

│ │ VerWall.tdf

│ │

│ └───ZonHand

│ │ ZONBAT.TDF

│ │ ZonFire.tdf

│ │ ZONGOB.TDF

│ │ ZONLODE.TDF

│ │ ZONTER.TDF

│ │ ZonTrain.tdf

│ │ ZONTROLL.TDF

│ │

│ └───ZonHunt

│ │ ZonFire.tdf

│ │ ZonGlyph.tdf

│ │ ZONHAND.TDF

│ │ ZonLode.tdf

│ │

│ └───ZonHurt

│ │ ZonFire.tdf

│ │ ZonGlyph.tdf

│ │ ZONHAND.TDF

│ │ ZonLode.tdf

│ │

│ └───ZonLord

│ │ ZONDRAKE.TDF

│ │ ZonFlies.tdf

│ │ ZONGIANT.TDF

│ │ ZonLode.tdf

│ │ ZONORC.TDF

│ │ ZonRoc.tdf

│ │ ZonSham.tdf

│ │ ZONTRAIN.TDF

│ │

│ └───ZonSham

│ │ ZonDrag.tdf

│ │ ZONGOD.TDF

│ │ ZonMana.tdf

│ │

│ └───ZonTrain

│ ZonAmoe.tdf

│ ZonBar.tdf

│ ZonBasil.tdf

│ ZonGlyph.tdf

│ ZONGRYP.TDF

│ ZONHAND.TDF

│ ZonHarp.tdf

│ ZonKrak.tdf

│ ZonLode.tdf

│ ZonLord.tdf

│ ZonSpide.tdf

│ ZonSwamp.TDF

│ ZonWolf.tdf

│

└───Features

│ └───All Worlds

│ │ araarch_frozen.tdf

│ │ araarch_stone.tdf

│ │ arabow_frozen.tdf

│ │ arabow_stone.tdf

│ │ arabroad_frozen.tdf

│ │ arabroad_stone.tdf

│ │ arabuild_frozen.tdf

│ │ arabuild_stone.tdf

│ │ aracan_stone.tdf

│ │ aradrag_stone.tdf

│ │ arafast_stone.tdf

│ │ arafly_stone.tdf

│ │ aragren_frozen.tdf

│ │ aragren_stone.tdf

│ │ araknigh_stone.tdf

│ │ arapal_stone.tdf

│ │ araprie2_frozen.tdf

│ │ araprie2_stone.tdf

│ │ arapries_frozen.tdf

│ │ arapries_stone.tdf

│ │ arapult_frozen.tdf

│ │ arapult_stone.tdf

│ │ arasmith_frozen.tdf

│ │ arasmith_stone.tdf

│ │ araspy_frozen.tdf

│ │ araspy_stone.tdf

│ │ arasword_stone.tdf

│ │ aratre_stone.tdf

│ │ arawall.tdf

│ │ lifbird_stone.tdf

│ │ lifcow_frozen.tdf

│ │ lifcow_stone.tdf

│ │ lifdeer2_frozen.tdf

│ │ lifdeer2_stone.tdf

│ │ lifdeer_frozen.tdf

│ │ lifdeer_stone.tdf

│ │ lifsaber_frozen.tdf

│ │ lifsaber_stone.tdf

│ │ lifwolf_frozen.tdf

│ │ lifwolf_stone.tdf

│ │ monboar_frozen.tdf

│ │ monboar_stone.tdf

│ │ mondev_frozen.tdf

│ │ mondev_stone.tdf

│ │ monghoul_frozen.tdf

│ │ monghoul_stone.tdf

│ │ monpiran_stone.tdf

│ │ npcalch_frozen.tdf

│ │ npcalch_stone.tdf

│ │ npcayla_frozen.tdf

│ │ npcayla_stone.tdf

│ │ npcbeg2_frozen.tdf

│ │ npcbeg2_stone.tdf

│ │ npcbeg_frozen.tdf

│ │ npcbeg_stone.tdf

│ │ npcburi_stone.tdf

│ │ npcdern_stone.tdf

│ │ npcduma_stone.tdf

│ │ npcemen_stone.tdf

│ │ npcfarm2_frozen.tdf

│ │ npcfarm2_stone.tdf

│ │ npcfarm_frozen.tdf

│ │ npcfarm_stone.tdf

│ │ npcheket_frozen.tdf

│ │ npcheket_stone.tdf

│ │ npchunt_frozen.tdf

│ │ npchunt_stone.tdf

│ │ npcjor2_stone.tdf

│ │ npcjor_stone.tdf

│ │ npcleim_frozen.tdf

│ │ npcleim_stone.tdf

│ │ npcpeas2_frozen.tdf

│ │ npcpeas2_stone.tdf

│ │ npcpeas_frozen.tdf

│ │ npcpeas_stone.tdf

│ │ npcpow1_frozen.tdf

│ │ npcpow1_stone.tdf

│ │ npcpow2_frozen.tdf

│ │ npcpow2_stone.tdf

│ │ npcref_frozen.tdf

│ │ npcref_stone.tdf

│ │ npcsail_frozen.tdf

│ │ npcsail_stone.tdf

│ │ npcshop_frozen.tdf

│ │ npcshop_stone.tdf

│ │ npctribe_frozen.tdf

│ │ npctribe_stone.tdf

│ │ npcwagon_stone.tdf

│ │ tararch_frozen.tdf

│ │ tarbeak_stone.tdf

│ │ tarblack_stone.tdf

│ │ tarcan_frozen.tdf

│ │ tarcan_stone.tdf

│ │ tardemon_frozen.tdf

│ │ tardemon_stone.tdf

│ │ tardrag_stone.tdf

│ │ tarfire_frozen.tdf

│ │ tarfire_stone.tdf

│ │ targarg_stone.tdf

│ │ tarhand_stone.tdf

│ │ tarkam_frozen.tdf

│ │ tarkam_stone.tdf

│ │ tarknigh_stone.tdf

│ │ tarlich_frozen.tdf

│ │ tarmage_frozen.tdf

│ │ tarmage_stone.tdf

│ │ tarmind_frozen.tdf

│ │ tarmind_stone.tdf

│ │ tarprie2_stone.tdf

│ │ tarpries_stone.tdf

│ │ tarspout_frozen.tdf

│ │ tarspout_stone.tdf

│ │ tartb_frozen.tdf

│ │ tartb_stone.tdf

│ │ tartroop_stone.tdf

│ │ tarwall.tdf

│ │ tarwitch_frozen.tdf

│ │ tarwitch_stone.tdf

│ │ tarzom_frozen.tdf

│ │ verarch_frozen.tdf

│ │ verarch_stone.tdf

│ │ verbal_frozen.tdf

│ │ verbal_stone.tdf

│ │ verbers_frozen.tdf

│ │ verbers_stone.tdf

│ │ vercen_frozen.tdf

│ │ vercen_stone.tdf

│ │ vercrus_stone.tdf

│ │ verdrag_stone.tdf

│ │ verknigh_stone.tdf

│ │ verliege_frozen.tdf

│ │ verliege_stone.tdf

│ │ verlihr_frozen.tdf

│ │ verlihr_stone.tdf

│ │ vermer_frozen.tdf

│ │ vermer_stone.tdf

│ │ vermort_stone.tdf

│ │ vermusk_frozen.tdf

│ │ vermusk_stone.tdf

│ │ verpar_stone.tdf

│ │ verpult_frozen.tdf

│ │ verpult_stone.tdf

│ │ versword_stone.tdf

│ │ verwall.tdf

│ │ zonamoe_frozen.tdf

│ │ zonamoe_stone.tdf

│ │ zonbar_stone.tdf

│ │ zonbasil_frozen.tdf

│ │ zonbat_stone.tdf

│ │ zondrag_stone.tdf

│ │ zondrake_stone.tdf

│ │ zonflies_stone.tdf

│ │ zongob_frozen.tdf

│ │ zongob_stone.tdf

│ │ zongryp_stone.tdf

│ │ zonhand_frozen.tdf

│ │ zonhand_stone.tdf

│ │ zonharp_stone.tdf

│ │ zonkrak_stone.tdf

│ │ zonlord_frozen.tdf

│ │ zonlord_stone.tdf

│ │ zonorc_frozen.tdf

│ │ zonorc_stone.tdf

│ │ zonroc_stone.tdf

│ │ zonsham_frozen.tdf

│ │ zonsham_stone.tdf

│ │ zonswamp_frozen.tdf

│ │ zonswamp_stone.tdf

│ │ zonter_frozen.tdf

│ │ zonter_stone.tdf

│ │ zontrain_frozen.tdf

│ │ zontrain_stone.tdf

│ │ zontroll_stone.tdf

│ │ zonwolf_frozen.tdf

│ │ zonwolf_stone.tdf

│ │

│ └───Corpses

│ arafly_dead.tdf

│ aragren_dead.tdf

│ arapult_dead.tdf

│ arasiege_dead.tdf

│ aratrans_dead.tdf

│ monpiran_dead.tdf

│ tarcan_dead.tdf

│ tarhand_dead.tdf

│ verbal_dead.tdf

│ vercen_dead.tdf

│ verlight_dead.tdf

│ vermer_dead.tdf

│ zonamoe_dead.tdf

│ zonbar_dead.tdf

│ zonswamp_dead.tdf

│ zonwolf_dead.tdf

│

└───fonts

│ bodfontbody.gaf

│ bodfontbody.pcx

│ bodfontbody.tdf

│ bodfontdecor.gaf

│ bodfontdecor.pcx

│ boneyard_heading.gaf

│ boneyard_heading.pcx

│ boneyard_heading.tdf

│ bywarconsole.gaf

│ b_times new roman (100).gaf

│ b_times new roman (100).pcx

│ b_times new roman (100).tdf

│ b_times new roman (100b).gaf

│ b_times new roman (100b).pcx

│ b_times new roman (100b).tdf

│ decorativesm.gaf

│ decorativesm.pcx

│ decorativesm.tdf

│ font48.gaf

│ font48.pcx

│ font48.tdf

│ ig_times new roman (100).gaf

│ ig_times new roman (100).pcx

│ ig_times new roman (100).tdf

│ lombardic (cd).gaf

│ lombardic (cd).pcx

│ lombardic (cd).tdf

│ roman10.fnt

│ times new roman (100).gaf

│ times new roman (100).tdf

│ times new roman (100b).gaf

│ times new roman (100b).tdf

│

└───GameData

│ │ MOVEINFO.TDF

│ │

│ └───effects

│ │ effects.tdf

│ │

│ └───explosions

│ │ explosions.tdf

│ │

│ └───soundclasses

│ AraFly.tdf

│ AraGren.tdf

│ AraSiege.tdf

│ aratrans.tdf

│ soundclasses.tdf

│ tarang.tdf

│ TarCan.tdf

│ TarHand.tdf

│ TarKam.tdf

│ verbal.tdf

│ vercen.tdf

│ Verlight.tdf

│ VerMer.tdf

│ zonamoe.tdf

│ zonbar.tdf

│ ZonSwamp.tdf

│ ZonWolf.tdf

│

└───guis

│ battlemenumulti.gui

│ battlemenusingle.gui

│ creingame.gui

│ creingameold.gui

│ creingametest.gui

│ creonigold.gui

│ hostgame.gui

│ mainmenu1.gui

│ playercampaigndialogue.gui

│ selectgame.gui

│ victorycre.gui

│ visualoptions1.gui

│

└───Objects3D

│ AraBolt.3do

│ AraFly.3do

│ arafly_dead.3do

│ aragren.3do

│ AraGren1.3do

│ AraGren1_vet.3do

│ aragren_dead.3do

│ AraSiege.3do

│ arasiege_dead.3do

│ aratrans.3do

│ aratrans_dead.3do

│ tarang.3do

│ tarcan.3do

│ tarcan_dead.3do

│ tarhand.3do

│ tarhand_dead.3do

│ tarkam.3do

│ verbal.3do

│ verbal1.3do

│ verbal1_vet.3do

│ verbal_dead.3do

│ vercen.3do

│ vercen_dead.3do

│ verlight.3do

│ VerLight1.3do

│ VerLight2.3do

│ VerLight3.3do

│ verlight_dead.3do

│ vermer.3do

│ vermer_dead.3do

│ zonamoe.3do

│ zonamoe_dead.3do

│ zonbar.3do

│ zonbar_dead.3do

│ zonswamp.3do

│ zonswamp_dead.3do

│ zonwolf.3do

│ ZonWolf2.3do

│ zonwolf_dead.3do

│

└───Scripts

│ ARAFLY.COB

│ ARAGREN.COB

│ ARASIEGE.COB

│ aratrans.cob

│ tarang.cob

│ TARCAN.COB

│ TARHAND.COB

│ TARKAM.COB

│ verbal.cob

│ vercen.cob

│ VERLIGHT.COB

│ VERMER.COB

│ zonamoe.cob

│ zonbar.cob

│ ZONSWAMP.COB

│ ZONWOLF.COB

│ ZONWOLF2.COB

│

└───Sounds

│ ARAFLYSEL1.wav

│ ARAGRENDIE1.wav

│ ARAGRENMOV1.wav

│ ARAGRENSEL1.wav

│ ARASIEGEDIE1.wav

│ ARASIEGEMOV1.WAV

│ ARASIEGESEL1.WAV

│ aratransmov1.wav

│ aratranssel1.wav

│ lightbeam.wav

│ tarangdie1.wav

│ tarangmov1.wav

│ tarangsel1.wav

│ TARCANDIE1.wav

│ TARCANFIRE.wav

│ TARCANMOV1.wav

│ TARCANSEL1.wav

│ TARHANDDIE1.WAV

│ TARHANDMOV1.WAV

│ TARHANDSEL1.WAV

│ TARKAMDIE1.wav

│ TARKAMMOV1.wav

│ TARKAMSEL1.wav

│ verbaldie1.wav

│ verbalmov1.wav

│ verbalsel1.wav

│ vercendie1.wav

│ vercenmov1.wav

│ vercensel1.wav

│ VERLIGHTDIE1.wav

│ VERLIGHTSEL1.wav

│ VERMERDIE1.wav

│ VERMERMOV1.wav

│ VERMERSEL1.wav

│ zonamoedie1.wav

│ zonamoemov1.wav

│ zonamoesel1.wav

│ zonbarsel1.wav

│ ZONSWAMPDIE1.wav

│ ZONSWAMPMOV1.wav

│ ZONSWAMPSEL1.wav

│ ZONWOLFDIE1.wav

│ ZONWOLFMOV1.wav

│ ZONWOLFSEL1.wav

│

└───Sounds-French

│ ARAGRENMOV1.WAV

│ ARAGRENSEL1.WAV

│ TARHANDSEL1.WAV

│ VERMERDIE1.WAV

│ VERMERMOV1.WAV

│ VERMERSEL1.WAV

│

└───Sounds-German

│ ARAGRENMOV1.WAV

│ ARAGRENSEL1.WAV

│ TARHANDSEL1.WAV

│ VERMERDIE1.WAV

│ VERMERMOV1.WAV

│ VERMERSEL1.WAV

│

└───Sounds-Italian

│ ARAGRENMOV1.wav

│ ARAGRENSEL1.wav

│ TARHANDSEL1.wav

│ VERMERDIE1.wav

│ VERMERMOV1.wav

│ VERMERSEL1.wav

│

└───Sounds-Spanish

│ ARAGRENMOV1.wav

│ TARHANDMOV1.WAV

│ TARHANDSEL1.WAV

│ VERMERDIE1.WAV

│ VERMERMOV1.WAV

│ VERMERSEL1.WAV

│

└───Translate

│ arafly.tdf

│ aragren.tdf

│ arasiege.tdf

│ aratrans.tdf

│ boneyards.tdf

│ Crusades.tdf

│ customkeys.tdf

│ death.tdf

│ features.tdf

│ guiexpansion.tdf

│ gui_text.tdf

│ leaderboard.tdf

│ load_screen.tdf

│ maps.tdf

│ messages.tdf

│ missions.tdf

│ networking.tdf

│ npcs.tdf

│ shortcutkeys.tdf

│ startup.tdf

│ tarcan.tdf

│ tarhand.tdf

│ unitchatter.tdf

│ unitmissions.tdf

│ unitnames.tdf

│ verbal.tdf

│ vercent.tdf

│ verlight.tdf

│ vermer.tdf

│ zonamoe.tdf

│ zonbar.tdf

│ zonswamp.tdf

│ zonwolf.tdf

│

└───units

│ araarch.fbi

│ araat.fbi

│ arabow.fbi

│ arabroad.fbi

│ arabuild.fbi

│ aracan.fbi

│ aracastl.fbi

│ aradrag.fbi

│ arafast.fbi

│ arafly.fbi

│ aragod.fbi

│ aragren.fbi

│ arakeep.fbi

│ araking.fbi

│ araknigh.fbi

│ aralode.fbi

│ aramana.fbi

│ arangate.fbi

│ aranull.fbi

│ arapal.fbi

│ araprie2.fbi

│ arapries.fbi

│ arapult.fbi

│ arasiege.fbi

│ arasmith.fbi

│ araspy.fbi

│ arassh.fbi

│ arasword.fbi

│ aratrans.fbi

│ aratre.fbi

│ arawall.fbi

│ arawar.fbi

│ lifbird.fbi

│ lifcow.fbi

│ lifdeer.fbi

│ lifdeer2.fbi

│ lifsaber.fbi

│ lifwolf.fbi

│ monboar.fbi

│ mondev.fbi

│ monghoul.fbi

│ monpiran.fbi

│ npcalch.fbi

│ npcayla.fbi

│ npcbeg.fbi

│ npcbeg2.fbi

│ npcbotl.fbi

│ npcburi.fbi

│ npcdern.fbi

│ npcduma.fbi

│ npcemen.fbi

│ npcfarm.fbi

│ npcfarm2.fbi

│ npcflag.fbi

│ npcheket.fbi

│ npchunt.fbi

│ npcjor.fbi

│ npcjor2.fbi

│ npcleim.fbi

│ npcpeas.fbi

│ npcpeas2.fbi

│ npcpow1.fbi

│ npcpow2.fbi

│ npcref.fbi

│ npcrixx.fbi

│ npcsail.fbi

│ npcshop.fbi

│ npctemp.fbi

│ npctemp2.fbi

│ npcthesh.fbi

│ npctribe.fbi

│ npcwagon.fbi

│ tarang.fbi

│ tararch.fbi

│ tarbeak.fbi

│ tarblack.fbi

│ tarcage.fbi

│ tarcan.fbi

│ tarcastl.fbi

│ tardemon.fbi

│ tardrag.fbi

│ tardung.fbi

│ tarfire.fbi

│ targarg.fbi

│ targod.fbi

│ tarhand.fbi

│ tarhell.fbi

│ tarkam.fbi

│ tarknigh.fbi

│ tarlich.fbi

│ tarlode.fbi

│ tarmage.fbi

│ tarmana.fbi

│ tarmind.fbi

│ tarnecro.fbi

│ tarngate.fbi

│ tarprie2.fbi

│ tarpries.fbi

│ tarsh.fbi

│ tarship.fbi

│ tarspout.fbi

│ tartb.fbi

│ tartroop.fbi

│ tarwall.fbi

│ tarwitch.fbi

│ tarzom.fbi

│ verarch.fbi

│ verasy.fbi

│ verat.fbi

│ verbal.fbi

│ verball.fbi

│ verbers.fbi

│ vercastl.fbi

│ vercen.fbi

│ vercrus.fbi

│ verdrag.fbi

│ verflag.fbi

│ verfltwr.fbi

│ vergod.fbi

│ verharp.fbi

│ verkeep.fbi

│ verknigh.fbi

│ verliege.fbi

│ verlight.fbi

│ verlihr.fbi

│ verlode.fbi

│ vermage.fbi

│ verman.fbi

│ vermana.fbi

│ vermer.fbi

│ vermort.fbi

│ vermusk.fbi

│ verngate.fbi

│ verpar.fbi

│ verpill.fbi

│ verpult.fbi

│ verscout.fbi

│ versword.fbi

│ vertower.fbi

│ vertrans.fbi

│ vertre.fbi

│ verwall.fbi

│ zonamoe.fbi

│ zonbar.fbi

│ zonbasil.fbi

│ zonbat.fbi

│ zondrag.fbi

│ zondrake.fbi

│ zonfire.fbi

│ zonflies.fbi

│ zongiant.fbi

│ zonglyph.fbi

│ zongob.fbi

│ zongod.fbi

│ zongryp.fbi

│ zonhand.fbi

│ zonharp.fbi

│ zonhunt.fbi

│ zonhurt.fbi

│ zonkrak.fbi

│ zonlode.fbi

│ zonlord.fbi

│ zonmana.fbi

│ zonorc.fbi

│ zonroc.fbi

│ zonsham.fbi

│ zonswamp.fbi

│ zonter.fbi

│ zontrain.fbi

│ zontroll.fbi

│ zonwolf.fbi

│ zonwolf2.fbi

│

└───unitscb

 araarch.fbi

 araat.fbi

 arabow.fbi

 arabroad.fbi

 arabuild.fbi

 aracan.fbi

 aracastl.fbi

 aradrag.fbi

 arafast.fbi

 arafly.fbi

 aragod.fbi

 aragren.fbi

 arakeep.fbi

 araking.fbi

 araknigh.fbi

 aralode.fbi

 aramana.fbi

 arangate.fbi

 aranull.fbi

 arapal.fbi

 araprie2.fbi

 arapries.fbi

 arapult.fbi

 arasiege.fbi

 arasmith.fbi

 araspy.fbi

 arassh.fbi

 arasword.fbi

 aratrans.fbi

 aratre.fbi

 arawall.fbi

 arawar.fbi

 lifbird.fbi

 lifcow.fbi

 lifdeer.fbi

 lifdeer2.fbi

 lifsaber.fbi

 lifwolf.fbi

 monboar.fbi

 mondev.fbi

 monghoul.fbi

 monpiran.fbi

 npcalch.fbi

 npcayla.fbi

 npcbeg.fbi

 npcbeg2.fbi

 npcbotl.fbi

 npcburi.fbi

 npcdern.fbi

 npcduma.fbi

 npcemen.fbi

 npcfarm.fbi

 npcfarm2.fbi

 npcflag.fbi

 npcheket.fbi

 npchunt.fbi

 npcjor.fbi

 npcjor2.fbi

 npcleim.fbi

 npcpeas.fbi

 npcpeas2.fbi

 npcpow1.fbi

 npcpow2.fbi

 npcref.fbi

 npcrixx.fbi

 npcsail.fbi

 npcshop.fbi

 npctemp.fbi

 npctemp2.fbi

 npcthesh.fbi

 npctribe.fbi

 npcwagon.fbi

 tarang.fbi

 tararch.fbi

 tarbeak.fbi

 tarblack.fbi

 tarcage.fbi

 tarcan.fbi

 tarcastl.fbi

 tardemon.fbi

 tardrag.fbi

 tardung.fbi

 tarfire.fbi

 targarg.fbi

 targod.fbi

 tarhand.fbi

 tarhell.fbi

 tarkam.fbi

 tarknigh.fbi

 tarlich.fbi

 tarlode.fbi

 tarmage.fbi

 tarmana.fbi

 tarmind.fbi

 tarnecro.fbi

 tarngate.fbi

 tarprie2.fbi

 tarpries.fbi

 tarsh.fbi

 tarship.fbi

 tarspout.fbi

 tartb.fbi

 tartroop.fbi

 tarwall.fbi

 tarwitch.fbi

 tarzom.fbi

 verarch.fbi

 verasy.fbi

 verat.fbi

 verbal.fbi

 verball.fbi

 verbers.fbi

 vercastl.fbi

 vercen.fbi

 vercrus.fbi

 verdrag.fbi

 verflag.fbi

 verfltwr.fbi

 vergod.fbi

 verharp.fbi

 verkeep.fbi

 verknigh.fbi

 verliege.fbi

 verlight.fbi

 verlihr.fbi

 verlode.fbi

 vermage.fbi

 verman.fbi

 vermana.fbi

 vermer.fbi

 vermort.fbi

 vermusk.fbi

 verngate.fbi

 verpar.fbi

 verpill.fbi

 verpult.fbi

 verscout.fbi

 versword.fbi

 vertower.fbi

 vertrans.fbi

 vertre.fbi

 verwall.fbi

 zonamoe.fbi

 zonbar.fbi

 zonbasil.fbi

 zonbat.fbi

 zondrag.fbi

 zondrake.fbi

 zonfire.fbi

 zonflies.fbi

 zongiant.fbi

 zonglyph.fbi

 zongob.fbi

 zongod.fbi

 zongryp.fbi

 zonhand.fbi

 zonharp.fbi

 zonhunt.fbi

 zonhurt.fbi

 zonkrak.fbi

 zonlode.fbi

 zonlord.fbi

 zonmana.fbi

 zonorc.fbi

 zonroc.fbi

 zonsham.fbi

 zonswamp.fbi

 zonter.fbi

 zontrain.fbi

 zontroll.fbi

 zonwolf.fbi

 zonwolf2.fbi
FBI Functions

[image: image61.png]

by Hansolo

The purpose of this document is to explain the different functions of the unit files for TAK. These files are the ones in the HAPI compressed file, in the sub-directory /UNITS/. Their file extension is FBI, the same as it was in TA.

The first notable differences with TAK unit files; is that they now contain weapon data as well, which were previously in separate TDF files. This is probably due to the fact that there are no longer a finite amount of Weapon ID's, so any weapons can be duplicated without ID-using difficulties.

All right then; let's get started. Commands are now listed in alphabetical order, not that it makes any difference, but it allows specific commands to be found easier. I will be referring to the unit instructions ONLY - not the weapons ones, which appear in a different section of the file. All values marked with a '(B)', are Boolean values, where 0 = negative, 1 = positive.

FBI TABLE

	acceleration = 10;
	This is the rate at which a unit will accelerate

	
	

	activatewhenbuilt
	Whether the unit is active (turned on), when first built. (B?)

	
	

	admultiplier = ?;
	Unknown

	
	

	animatetype = ?;
	Unknown

	
	

	attackrunlength = 150;
	How far the flying unit will move, before turning around for another pass.

	
	

	attractsgods = 1;
	This unit has to be built for your side's god to appear. (Pre-3.0???)

	
	

	bankscale = 0.4;
	Not sure, to do with the 'banking' of flying units.

	
	

	bloodcolor1 = 160 35 0;
	I'm not sure about the significance of the 3

different colors, but they are the RGB values

of the blood. (RED BLUE GREEN, 0-255).

	bloodcolor2 = 170 40 0;
	

	bloodcolor3 = 180 30 5;
	

	
	

	bmcode = 1;
	Unknown

	
	

	bodytype = flesh;
	I presume that this will generate the appropriate sounds and damage; yet to be confirmed.

	
	

	brakerate = 10;
	This is the rate at which a unit will decelerate.

	
	

	Buildangle
	The angle the unit is built at, not compulsory.

	
	

	buildcost = 325;
	This is the cost of the unit in Mana, replaces

the 'buildcostenergy and buildcostmetal' of TA.

	
	

	builder = 1;
	Whether the unit can build units. (B)

	
	

	builderlimited = 1;
	Whether the unit can aid in other units building. As far as I am aware, it is only Monarchs that have a value of 0. (B)

	
	

	buildtime = 125;
	This is the time it takes for the unit to be built, directly linked with buildcost; ratio

	
	determines Mana depletion.

	
	

	cananimate = 1;
	Whether the unit can animate (turn a corpse into a ghoul). (B)

	
	

	canattack = 1;
	Whether the unit can attack. (B)

	
	

	canbuild = 1;
	Not sure if this is used by the game, would appear to have same affect as 'builder'. (B)

	
	

	cancapture = 1;
	Whether the unit can capture. (B)

	
	

	cancloak = 1;
	Whether the unit can cloak. (B)

	
	

	canfly = 1;
	Whether the unit can fly. (B)

	
	

	canguard = 1;
	Whether the unit can guard. (B)

	
	

	canhover = 1;
	Whether the unit hovers. (B)

	
	

	canload = 1;
	Whether the unit can load. (B)

	
	

	canmove = 1;
	Whether the unit can move. (B)

	
	

	canpatrol = 1;
	Whether the unit can patrol. (B)

	
	

	canreclaim = 1;
	Whether the unit can reclaim, or clear as it is know in game. (B)

	
	

	canresurrect = 1;
	Whether the unit can bring units back to life. (B)

	
	

	canstop = 1;
	Whether the unit can stop. (B)

	
	

	cantbecaptured = 1;
	Whether the unit cannot be captured. (B)

	
	

	cantbestoned = 1;
	Whether the unit can be turned to stone, similar to the cantbeparalyzed command in TA. (B)

	
	

	cantbetransported = 1;
	Whether the unit cannot be transported. (B)

	
	

	cantransport = 1;
	Whether the unit can transport. (B)

	
	

	category = ARA BALLISTIC ATTACK;
	This defines the categories the unit falls into.

	
	In this example, it is an Aramon unit (ARA), has a ballistic weapon, and can attack. I'm not sure how much of an effect this has on the game, but I think it may be used by the AI.

	
	

	
	

	cloakcost = 14;
	How much Mana the unit uses when cloaked.

	
	

	cloakcostmoving = 21;
	How much Mana the unit uses when cloaked and moving.

	
	

	commander = 1;
	Whether the unit is a commander/monarch (used when working out if you're Monarch is dead, not which unit you start off with; that's in the gamedata/sidedata.tdf).

	
	

	copyright = Copyright 1999 Humongous Entertainment. All rights reserved.;
	CD's little reminder who made the game. In TA v3 and above, this line was necessary. Yet to be confirmed whether the line is needed, but I presume it is.

	
	

	
	

	corpse = araarch_dead;
	The corpse that the unit uses. This refers to the matching record in the features/corpses/ and not the dead_3do as may be thought.

	
	

	corpseadjustx = ?;
	Unknown. Possibly something to do with the corpse of the unit being a different size to the building?

	
	

	corpseadjustz = ?;
	Unknown. Possibly something to do with the corpse of the unit being a different size to the building?

	
	

	cruisealt = 200;
	The distance from the ground the unit flies at.

	
	

	damagecategory = Human;
	I presume that this is related to the kind of damage it takes (i.e. Zombies take less damage from arrows than humans…)

	
	

	defaultmissiontype = Standby;
	This defines what the unit does when it is first built. Most (if not all) units are Standby, with flying units using VTOL_Standby.

	
	

	
	

	description = Aramon;
	Not sure whether this appears in the game, in TA it was under the name in the build menu. It appears that this simply states the side that the unit appears for.

	
	

	economybonus = 30;
	Unknown. Surely something to do with Mogrium, or Mana income, but not sure of it's relevance.

	
	

	experiencepoints = 7;
	The number of experience points the unit gives its killer when killed. The bigger and better the unit, the higher the points. To be confirmed.

	
	

	fireatwillrandom = 1;
	I'm not sure whether this is a Boolean value or not. It only seems to appear in units with ballistic weapons; and could be an indicator of whether they will fire at enemy before being attacked, if in defensive mode. (B?)

	
	

	floater = 1;
	Whether the unit floats on water. (B)

	
	

	footprintx = 2;
	The width of the unit, used to stop overlapping 3do's. Buildings only, mobile unit's footprints are defined in the movementclass.

	
	

	footprintz = 2;
	The depth of the unit, used to stop overlapping 3do's. Buildings only, mobile unit's footprints are defined in the movementclass.

	
	

	gate = 1;
	Whether the unit is a gate. (B)

	
	

	ghost = 1;
	Whether the unit is a ghost; and can move through features/corpses? (B)

	
	

	healtime = 0.520833333;
	How quickly the unit will heal. I think that this value indicates a damage unit recovered every half a second.

	
	

	hoverattack = 1;
	Whether the unit hovers and attacks, or makes sweeping runs. (B)

	
	

	hoverattackaltitude = 150;
	I presume this is only used if the altitude is different to 'cruisealt'. The altitude the hover- attacking unit is from the ground.

	
	

	hoverattackdistance = 150;
	How far the unit hovers from it's target.

	
	

	isfeature = 1;
	Used by the wall. Defines whether the unit becomes a feature once built. (B)

	
	

	manarechargerate = 10;
	How quickly the unit's Mana personal storage regenerates.

	
	

	maneuverleashlength = 500;
	This is how far the unit will move from it's movement path. This is useful when patrolling or moving in formation. This is how far the unit will go off on a whim, before returning to it's set course.

	
	

	
	

	maxdamage = 1100;
	The health of a unit. Cannot be exceeded, despite healtime.

	
	

	maxslope = 15;
	The maximum slope the unit can be built on. Buildings only, mobile unit's maxslopes are defined in the movementclass.

	
	

	maxmana = 1000;
	How much personal Mana the unit has. Cannot be exceeded, regardless of manarechargerate.

	
	

	maxvelocity = 1.25;
	The maximum speed of a unit. I think this is measured in the number of in-game units per second.

	
	

	maxwaterdepth = 0;
	The maximum depth the unit can be built on. Buildings only, mobile unit's maxwaterdepths are defined in the movementclass.

	
	

	mincloakdistance = 80;
	The distance at which cloaked units will be spotted.

	
	

	mogriumincome = 0;
	The amount of Mana the unit generates.

	
	

	mogriumstorage = 0;
	The amount of Mana the unit can store.

	
	

	movementclass = GROUND2;
	This refers to the movement classes in the 'moveinfo.tdf' in the gamedata directory. This defines the slopes that the unit can traverse, and the water depths. This seems to replace the 'maxslope' and 'maxwaterdepth' from TA, and goes with the general values defined in the TDF.

	
	

	
	

	moverate1 = 8;
	This value is called form the script, and I'm pretty sure it defines the speed it hover attacking units move from side to side.

	
	

	moverate2 = 8;
	See moverate1.

	
	

	name = Archer;
	The name of the unit, as it appears in the game.

	
	

	nochasecategory = FLY;
	The category that the unit will not chase.

	
	

	noshadow = 1;
	Whether the unit has no shadow. (B)

	
	

	notargetcategory = FLY;
	The category that the unit will not target.

	
	

	noveteran = 1;
	Whether the unit cannot become a Veteran (i.e. Gods). (B)

	
	

	objectname = ARAARCH;
	This is the name of the unit 3do.

	
	

	onoffable = 1;
	Whether the unit can be turned on/off. (B)

	
	

	pitchscale = 1.5;
	Unknown.

	
	

	radardistance = 550;
	How far the units radar extends.

	
	

	roadmultiplier = 1.21;
	This is the value that the unit's maxvelocity is multiplied by, when it is travelling over roads and smooth surfaces. (i.e. The Aramon Archer goes at a speed of [1.21x1.25=1.5125] when travelling on roads.)

	
	

	roadmultplier = 1.21;
	Typo on Cavedog's part, unknown if it works the same as roadmultiplier. Only included for completion's sake.

	
	

	shadowart = shadow03;
	I think that this refers to the kind of shadow to use, but due to current Utility incompatibilities, this is unconformable.

	
	

	shadowgaf = shadows;
	See shadowart.

	
	

	shootme = 1;
	Whether enemy units will target the unit. (B)

	
	

	side = ARA;
	This is the side the unit fights for:

ARA = Aramon

TAR = Taros

VER = Veruna

ZON = Zhon

LIF = Lifeforms

NPC = Non-Player-Characters

MON = Wandering Monsters

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	sightdistance = 180;
	How far the unit can see.

	
	

	sonardistance = 100;
	The distance the unit's sonar extends.

	
	

	soundcategory = ARAARCH;
	The sound category that the unit uses. This unit therefore uses the sounds ARAARCHDIE1, ARAARCHMOV1 and ARAARCHSEL1.

	
	

	soundclass = ARAARCH;
	Unknown, appears to be the same as soundcategory.

	
	

	standingmoveorder = 1;
	What the unit's movement order is when built. Possibly used to say whether they are guarding, patrolling or moving, but I can't see how it would work.

	
	

	standingunitorder = 1;
	What the unit's order is when it is built. I presume that (0=Attacking, 1=Defensive and 2=Passive).

	
	

	stone = araarch_stone;
	What textures the unit uses when turned to stone.

	
	

	tedclass = Aramon;
	Used by the AI.

	
	

	totalallowed = 1;
	The number of the units allowed at one time. Can limit ultra-powerful units like the Gold Dragon, or units with many faces, such as the Aramon Chariot.

	
	

	transmaxunits = 1;
	I 'think' that this value is for flying transports only, as it appears only in the FBI of the Zhon Roc as far as I can tell. This is the same as 'transportcapacity' in this case…

	
	

	transportcapacity = 16;
	How many units the unit can transport.

	
	

	transportdistance = 300;
	How far away the unit has to be to load/unload.

	
	

	transportsize = 9;
	The maximum size of a unit that can be transported.

	
	

	transportsizecapacity = 64;
	The total capacity in unit size that the unit can carry. This might mean that it cannot reach it's full unit capacity.

	
	

	turninplacerate = 2400;
	How long it takes for the unit to turn on the spot.

	
	

	turnrate = 2400;
	How long it takes the unit to turn.

	
	

	unitname = ARAARCH;
	The name of the unit's FBI, Buildpic. Usually will match Objectname.

	
	

	unitnumber = 1;
	'Should' have no purpose other than for identification. In TA v1, it defined the unit, and could cause conflicts. TAK allegedly has unlimited unit ID's.

	
	

	unitstandorders = 0;
	A building's version of standingunitorders.

	
	

	upright = 1;
	Whether the unit is upright. Affects whether the unit will tilt on uneven terrain. (B)

	
	

	version = 1;
	The version of the unit. In TA, the FBI with the higher version, overwrote one with a lower version of the same name. Useful when updating units in updates.

	
	

	waterline = 1;
	Where the water comes up to on the unit.

	
	

	watermultiplier = 0.81;
	How the unit's speed is affected in it's waterdepth. Works in the same way as roadmultiplier.

	
	

	watermultipliser = 0.81;
	That's two typos for Cavedog, this is quite blatently a mis-typed watermultiplier. Only included for completion's sake.

	
	

	weaponswitching = 1;
	Whether the units will switch weapons independently (i.e. when it runs out of Mana, it will switch to a lower weapon.)

	
	

	wind = 1;
	I'm not sure about this one. I thought that it may be to do with the fact that the unit is partially propelled by the wind, seeing that it appears in the boat's FBIs. I am not aware of any wind in TAK though, although it's quite possible that it is there, but what purpose it plays is unknown. The curious thing is, that this line appears in the Lodestone's FBI. This leads to the thinking that it may be to do with the wind, moving mana around; although this is not apparent in game. I remember reading in early previews of TAK, that mana was rich in certain areas, and perhaps the wind originally moved it around. Still, as far as I can tell; this command has no use; but this cannot be tested as of yet. (B?)

	
	

	workertime = 10;
	How quickly the unit builds and repairs/reclaims.

	
	

	wpri_badtargetcategory = FLY;
	The category of units that the unit is bad at targeting; possibly only for VTOL units…

	
	

	
	

	yardmap = S;
	Which parts of the unit can be moved through, details unknown.

Some units have exceptions to these rules. One example is the ARASMITH or Aramon Titan. This unit gives surrounding allies an armour bonus. Other units have the ability to adjust Attack (preumably damage), and Joy (likelyhood to fight to the death?) These are portrayed in the FBI in separate sections within the unit details:

[AdjustArmor/Attack/Joy]

{

adjustment = 1.4;
The bonus the unit provides. I presume that the units maxdamage is multiplied by this value, but I am not sure whether the bonus is permanent, or only applies when in the radius if a Titan. Therefore, rather than modifying the unit's maxdamage, it might be the damage coming in that is divided. Also, I am not sure whether multiple Titans can 'add up' bonuses, allowing for some super-tough units. I am also not sure whether Titans can give the bonus to other Titans.

affectsenemy = 0;
Whether the 'bonus' affects enemy units. (B)

edgeeffectiveness = 0.6;

The effectiveness of the bonus for units not completely in the radius.

radius = 200;

The radius of the 'bonus'.

}

HPI Format Documentation– TA:K

[image: image62.png]

ZLib compression and decompression by Jean-loup Gailly (compression) and Mark Adler (decompression). For more info, see the zlib Home Page at http://www.cdrom.com/pub/infozip/zlib/ .

Warning: This is intended for use by people that already know what they're doing.

I'm a C programmer, so I'm doing things in C notation here, but I'll try to explain it so that those of you that don't speak C will be able to understand. If you don't understand, write me at joed@cws.org and I'll try to clear things up.

The first part of the file is a version header, followed by a file header.

The version header looks like this:

typedef struct _HPIVersion {

 long HPIMarker;

 /* 'HAPI' */

 long Version; /* 'BANK' if saved gamed */

} HPIVersion;

	HPIMarker
	This is just a marker. The value is always HAPI in ASCII. In

hex, it's 0x49504148

	Version
	If it's a TA saved game, the value is BANK in ASCII, or 0x4B4E4142 in hex.

If the value is 0x00010000, then it's a Total Annihilation archive. See the HPI-FMT document.

If it's 0x00020000, then it's a TA:Kingdoms archive.

Immediately following the version header is the file header. It looks like this:

typedef struct _HPIHEADER2 {

 long DirBlock;

 long DirSize;

 long NameBlock;

 long NameSize;

 long Data;

 long Last78;

} HPIHEADER2;

	DirBlock
	This is a pointer to the file directory.

This block may or may not be compressed. It it starts with 'SQSH' (hex 0x48535153), it's compressed. If it doesn't, it's not. Decompress like any other SQSH block, described

below.

	DirSize
	This is the size of the directory block pointed to above.

	NameBlock

	This is a pointer to the actual file names.

This block may or may not be compressed. It it starts with 'SQSH' (hex 0x48535153), it's compressed. If it doesn't, it's not. Decompress like any other SQSH block, described

below.

	NameSize
	This is the size of the file name block pointed to above.

	Data
	This is the start of the actual file data, as near as I can figure. It always seems to be set to 0x20.

	Last78
	This is either 0, or it points to the last 78 bytes of the file. There is some data at that point, but I haven't figured out more than the copyright information.

HOW THE DIRECTORY WORKS
Read in the DirBlock and NameBlock. Decompress if necessary.

The NameBlock is merely a list if null-terminated file names of varying lengths. It also starts with a null.

The directory block consists of either file or directory entries.

The first entry in the DirBlock will be the directory entry for the root directory of the file.

A directory entry looks like this:

typedef struct _HPIDIR2 {

 long NamePtr;

 long FirstSubDir;

 long SubCount;

 long FirstFile;

 long FileCount;

} HPIDIR2;

	NamePtr
	This points to the name of the directory in the NameBlock.

	FirstSubdir
	This points to the directory entry in the DirBlock of the

first subdirectory of this directory. Subsequent

subdirectory entries follow.

	SubCount
	How many subdirectories there are in this directory.

	FirstFile
	This points to the file entry in the DirBlock of the

first file of this directory. Subsequent file entries

follow.

	FileCount
	How many file entries there are in this directory

A file entry looks like this:

typedef struct _HPIENTRY2 {

 long NamePtr;

 long Start;

 long DecompressedSize;

 long CompressedSize; /* 0 = no compression */

 long Date; /* date in time_t format */

 long Checksum;

} HPIENTRY2;

	NamePtr
	Points to the file name in the NameBlock.

	Start

	Points to the start of the file in the hpi archive.

	DecompressedSize
	The final decompressed size of the file.

	CompressedSize
	The total compressed size of the file. If this is 0, the file is not compressed.

	Date

	The file date in time_t format. This is the number of seconds since Jan 1, 1970, GMT.

	Checksum

	A checksum. This isn't really a single checksum - it's actually 4 checksums in one, but it's easier to manipulate it if you treat it

as a single long. More on checksum calculation below

CHECKSUM CALCULATION

The checksum in each HPIENTRY2 is calculated from the uncompressed file data.

It's actually four checksums in one, each 8-bit byte being one of the checksums.

The first one is the sum of all the unsigned bytes in the file.

The second one is the cumulative XOR of all the unsigned bytes in the file.

The third one is the sum of all the unsigned bytes in the file, each byte XOR'd with its offset before being added.

The fourth one is the cumulative XOR of all the unsigned bytes in the file, each byte XOR'd with its offset before being XOR'd.

Here's some C code to calculate it:

int CheckCalc(long *cs, char *buff, long size)

{

 int count;

 unsigned int c;

 unsigned char *check = (unsigned char *) cs;

 for (count = 0; count < size; count++) {

 c = (unsigned char) buff[count];

 check[0] += c;

 check[1] ^= c;

 check[2] += (c ^ ((unsigned char) (count & 0x000000FF)));

 check[3] ^= (c + ((unsigned char) (count & 0x000000FF)));

 }

 return *cs;

}

DECOMPRESSION OF BLOCKS AND FILES

If the block was not compressed at all, then it is just inserted into the HPI file as one big chunk.

Each chunk looks like this:

typedef struct _HPIChunk {

 long Marker; /* always 0x48535153 (SQSH) */

 char Unknown1;

 char CompMethod; /* 1=LZ77, 2=ZLib */

 char Encrypt; /* is the block encrypted? */

 long CompressedSize; /* the length of the compressed data */

 long DecompressedSize; /* the length of the decompressed data */

 long Checksum; /* Checksum */

 char data[]; /* 'CompressedSize' bytes of data */

} HPIChunk;

	Marker
	This is the start-of-chunk marker, and is always 0x48535153 (ASCII 'SQSH').

	Unknown1
	I know not what this is for. It's always 0x02.

Maybe some sort of version number

	CompMethod
	This is the compression method. It's 1 for LZ77, 2 for ZLib.

I don't know if TAK does LZ77 - all the files distributed with

the game use ZLib.

	Encrypt

	This tells whether the block is encrypted. See below

	CompressedSize
	This is the size of the compressed data in the chunk

	DecompressedSize

	This is the size of the decompressed data in the chunk.

	Checksum

	This is a checksum of the data. It's merely the sum of all the bytes of

data (treated as unsigned numbers) added together

	data
	The actual compressed data in the chunk

The 'Encrypt' field in the HPIChunk header is set to 1 to indicate

that this decryption needs to be done.

To decrypt, do this:

for x = 0 to CompressedSize-1

 data[x] = (data[x] - x) XOR x

next x
If CompMethod is 2, use ZLib compression to decompress the block. You can get the zlib

source code from the zlib home page at http://www.cdrom.com/pub/infozip/zlib/

TNT Format and Conversion

[image: image63.png]

By: C_A_P

Index:

1. Using the Exporter

· · Heightmap

· · Minimap

· · Voidmap

· · Roadmap

· · Jpeg Key

· · The “Auto” functions

2. Using the Terrain Reader

· · Exporting the Heightmap

· · Jpeg Key Value (Hex Keys and Hex Values)

Using the Exporter:

The TAK terrain section exporter is able to create a TAK compatible terrain

Section TNT file, along with organizing and auto-naming the JPG terrain pictures.

[image: image64.jpg]e
e ’
e =
R

Bt P eyt ey,

i =2

T

e

tns s i

Heightmap:

The heightmap is a special bitmap that is used by the TAK engine to model the terrain mesh. You can view the terrain mesh in -game by pressing the Enter key, and typing:

"+Contour +6" (you can replace 6 with any number from 1 - 9)

You would then type "+contour +0" to turn the mesh lines off...

The heightmap is a 256 color grayscale bitmap, and needs to be sized to 1/16 the size of your terrain image. Below is what a grayscale map may look like for a 512x512 section (the heightmap is 32x32 pixels):

[image: image65.png]

The Minimap:

The minimap is the thumbnail picture that Cartographer displays when you are browsing through the terrain sections. You must size this image to 128x128 pixels, and it should be converted over to the correct color palette. (each world in TAK has its own terrain color palette, which can be found in the palettes folder in the data1.hpi file)

Below is the minimap picture to go along with the heightmap above:

[image: image66.png]

The Voidmap:

TAK allows you to create a map, much like the heightmap, that tells the game where to not allow units to travel. The voidmap works by using White pixels to indicate that the area is voided, and Black pixels to indicate the area is not voided. It needs to be the same size as the heightmap.

[image: image67.png]

The Roadmap:

The Road map is exactly like the voidmap except that instead of indicating where units cannot go, it indicates where there are ‘roads’ or pathways. There are normally used on terrain sections where there are stone paths, or roads. These areas cause the units to move faster than normal when they walk on a ‘road’ …

The Jpeg Key

The Jpeg Key is how TAK knows which terrain graphic goes with the .tnt file. In TAK the terrain graphics were actually embedded in the .tnt files, but in TAK they are separate. This allows for much smaller map sizes…

There is a checkbox next to this that says “Type in Value” this allows you to specify a particular jpg, instead of randomly generating a number…

However, you do NOT type in the actual Hex number, it needs to be the numeric equivalent of the hex code.

For example: The Hex value of: 7F413CFF

Has a numeric value of: 2134981887

See more on this in the “Hex Keys and Hex Values’ section”

The Auto Functions:

The ‘auto’ functions are simply those two checkboxes that are in the exporter screen. One is labeled “Automatically copy JPG files to a specific folder”, and the other is labeled” Default path to save TNT files in”

The ‘JPG’ option will automatically name and place your jpg files into a specific folder (you will need and want this functionality when you being to build your terrain sections and need to pack them up into a file that can be used by the game).

Your JPG files MUST correspond with the hex value embedded in the .tnt files you create. This is done automatically for you if this box is checked…

The “Default path for TNT’ option is simply so the program knows where you want to save your .tnt files and will automatically select this as the default directory to display for you when you save your TNT files. Of course you can browse and put it somewhere else if you want.

The Terrain Reader

The terrain reader is simply a utility to extract the greyscale heightmaps from the terrain .tnt files. Its main purpose it to allow people to extract the heightmaps from the tnt section files so that they may blend them all together eventually!!! Mooohoohahhahahaha ;)

Simply press the export button to save off the terrain section greyscale bitmap….

[image: image68.jpg]

Hex Keys and Hex Values

The hex keys are actually the names of the .jpg files. If you open up the file called “terrain.hpi” using HPI View, then you will see all the strangly named .jpg files. These names are encoded into the TNT files so TAK know which terrain pieces go with each other. When you open a .tnt section in TNT, it will show you the terrain .jpg key so you will know which terrain graphic goes with it!!

Also, you get the ‘value’ which you can use if you need to alter an existing TNT and keep the same JPG reference……only advanced users should deal with this….

Package and Deployment!

To make your creations TAK compatible, you will need to get the TAK Compatible version of HPI Pack. Use the following example as a guide for how to build your directory structure:

Root Directory

Terrain Sections

Jpg1

World Name

Jpg2

Jpg3

Etc…

Category Name

Note: you can also open up my HPI file in HPI View and check out the directory structure within that file as well!

Have fun!!

Conversion Tutorial

By Jerry60000

Here in this tutorial I will try to explain how to use the TAK TNT.The other part of this tutorial is C_A_P's official one. I am just trying to help explain the few things that seem to confuse people the most.

Things you will need to work with making Kingdoms tile sets:

· Good paint utility
· The proper TAK palettes
· To make your own tiles you will need Bryce3D or equivalent.
· Lots of patience.
· TNT program from C_A_P, and TA: K, of course.
· HPI View and HPI pack

Other things that make life easier are a DrawPad.It is way easier to make small details and adjustments using a pen instead of a mouse.

Now here's a rundown of the files used.

Height Map : A grayscale bmp that defines the terrains characteristics. It makes mountains act like mountains, water act like water.
Void Map : Also a grayscale bmp. Will be identical to the Height map except that the places you don't want units to move will be marked. For example would be a lava terrain, you would open the Height map with your Paint Shop. Then in the places that contain lava you would select with your brush the color white. Just plain old white (Hex=FFFFFF) anything less wont work. This makes the lava voided to units. i.e. impassable.
Road Map :The opposite of of the Voidmap. Another greyscale bmp.Used for when you are making roadtiles and bridge tiles.Select the color white and just paint over the road part of the image.
JPEG Key :This is a jpg that is the full size of the tile in the game.Can be any size you want But remember that the Kingdoms Cartographer is a little unstable to handle big tiles.

Units Editor Tutorial – TDF Edit

[image: image69.png]

	INTRODUCTION

One of the qualities who made TA such a successful game, is with no doubt the possibility players have to make their own units. That allowed the game to be constantly evolving. This possibility also exists in TA:Kingdoms, and this tutorial is here to explain you how to create your own units.
The softwares you need to make your own units are the followings :
- HPI View 1.9.1
- HPI Pack 1.7
- 3Do Builder + 2.0
- A 3D soft, able to save under .LWO format file
- TDF Edit
You can download them here : www.gfruitrene.com or there www.multimania.com/takingdoms.(sorry it's french sites).

DESCRIPTION OF A TA:K UNIT
A TA:Kingdom unit is a .UFO file. This file is a compression (with HPI Pack) of all the files and folders a unit needs to work. One can see all these files / folders with HPI View. You can also use this soft to extract one or all these files.

[image: image70.png]HPI File
Fie Help

[_[OIx]

=4 C:Meuw\TA Kingdoms\AFyBuild ufo
=42 anims.
a
(=423 CANBUILD
{23 Araly
{23 AraPries
=14 features
23 all worlds
{20 Compses
=420 GAMEDATA
{23 soundclasses
{23 Objects3D
{23 Seripts
{23 sounds
{20 translate.
23 Units

Fie Nane [Type

Size

Arafyipg JPG fie

205

File Organization of Aramon Flying Builder
Each file or folder has a very specific role. To help with the creation of these files / folders, we will user TDF Edit, a utility that helps unit creation.

[image: image71.png]= TDFEdit 1.1
Fles Options._Help

Create Newrit | [[TerAes asmalIag] Save Thisunt Compress!

=1 Unithoot
i Arins

£ cnbuid

Fealues
Gamedata

g objects3D.
scipts
saunds
3 tanslate
1 uits

45 Misc

[_[CIx]

Please fill tis window wil ll needed information (wth]
1 advie you having aiready a good FBI fies dore.

Select diectory where your urit wil be saved:
[CATempt Select

Flease enter here the nme of your uri (o fie Ararion Fling Buider, but ke
‘AraFly) this name wil be used to name some TDF fies. No space, and llegal
characters allwed B chars mat. This i the ritname value of th FEI fie]
[arabowa -

And now the corps urit name (corpse vk in FB fe)
[rabona_dead T My urit doesrit have corpse when i dies

Flease enter now the stone unit name [stone vakie in the FBI fe].

ersbona_stone I Myt cartbe stoned

Create / Modify Cancel Mol

«<Prev. Newt>>

[Visk out web site (tp:/ /s mlimaria.comitekingdoms/)

TDF Edit Program
Important Note:
You probably noticed that all the files have the same name, with a differerent extension : ARAFLY for the Aramon Flying Builder. This name is the short name of te unit. The first three letters give the camp : ARA for Aramon, TAR for Taros, VER for Veruna, and ZON for, guess what ? Zhon ! The last five letters describe the unit. The short name must be unique among all the TA:K units, and all the files you are going to create must have this name and be in the same folder. You can check all the short names af all TA:K units here.

HOW TO USE THIS TUTORIAL ?

This tutorial is divided up in parts that match each folder of a typical unit. Each part explains what is found in this folder, how to edit it with TDF Edit, gives additional informations on this folder, and how to edit it by hand. This last method is needed to create precise units, and enables you to quickly change a parameter without launching TDFEdit. Personnaly I would advise you to use TDF Edit as much as you can, as it greatly reduces all the typos you can make while manually editing a file. For those who want to make things without TDF Edit, here is the tree they must first create :
[image: image72.png]=] arabowa
2 anims
20 canbuid
21 Features
2] GameData
1 obiects3D
23 scipts
2 sounds
2 banslate
7 units

You can also use a mixed method : create the tree and the main files with TDF Edit and tweak things by hand afterwards. Dont forget to name all the files with the short name you chose for your units.

HOW TO USE TDF EDIT

When you first launch TDF Edit, you must configure the programm. One this is done, you can : - create a new unit (Create new unit) or - modify an existing unit (Open already existing unit). If you chose to create a new unit, you will have to choose a folder where TDF Edit will save your work.
[image: image73.png]Please fill tis window wil ll needed information (wth]
1 advie you having aiready a good FBI fies dore.

Select diectory where your urit wil be saved:

[CATempy Select _|* Folder where your unit wil

Please ente herethe name of your uit (o ke Avemon Fling Buider, bt ke
AuaFly, this name il be sed o name some TDF fes. No space, and legal
characters llowied B chars mas. This s the uitname value of the FB le)
arabowa * Short name of your unit

‘And now the corps uit name (corpse vk inFBI fie)

[erabone_dead ™ My uni dossrit have corpse when t dies
Name of the dead corpse

Flease enter now the stone unit name [stone vakie n the FBI fe].

ersbona_stone I My it canftbe stoned Name of the stoned corpse.

Create / Modify Cancel Mol
«<Prev. Newt>>

be saved

The New Unit Creation Window. Here, the short name is ARABOWA, an Aramon archer. The unit will be saved id C:\temp.
Then, on the left, you will find a tree that holds all the sections needed by the unit. Their names match the names of the folders you would have to create by hand. Let us have a closer look at what is to be done in each section.

[image: image74.png]= Unit Root
1 Anins
5 canbuid

Fealues
Gamedata

g objects3D.
scipts
saunds
3 tanslate
79 urits

4 Mise.

	ANIMS

Description
In this folder there is a subfolder "Buildpics".
[image: image75.png]o

The pic of the unit that will appear in the construction menu is here. It is a JPG image, of size 64x48, 16 bits.

[image: image76.jpg]

Example : Aramon Flying Builder.
Action
1 : Create an JPG image, of size 64x48, 16 bits. We will use it to represent your new unit in the construction menus.

2 : Launch TDF Edit, click Open and open the image that you just created. It should appear in the window.

[image: image77.png]Select picturs who wil be shown i the creation st of the buiderof
your unitin Kingdams

[CATempharabawatanims buldpic\arabawaipg Open CREATE!

T it st b 3 64048 313 16 s JFEG pictne

The flename must be the same than the FEB fle: arabowa
Ifthis flename et t will be carreeted when you illsave your unit.

The selected image... Ok, its not an original one !

Info
I: Manual Edition of this folder
1: Save your image in the subfolder buildpic, created in the folder anims.

	CANBUILD

Description
You will find in this folder the informations needed in the game to build the unit, and its construction capacity if it is a builder.
This folder contains some subfolders:
- If one of these subfolder has the same name of the unit (short name), that means that this unit is a builder, and this subfodler will contain TDF files of all the units it can build.
- If it has the same name as an existing unit (the short name of the existing unit), then this subfolder will hold the TDF file of the unit you are creating.

Action
1: First, you need to know if your unit is a builder or not. Check "Yeh, my unit is a builder" accordingly.

[image: image78.png]I~ ‘Yeh, my unitis a builder!

Is your unit a builder ? Here: No!
2: You have to decide which units in TA:K wil be able to build your unit.

3: To tell TA:K the builders that can build your units, you must give the short name of the builders in the "required" list, and give a number. This number gives the place where the pic of your unit will appear in the build menu of the builder. If you want to put it between the 5th and the 6th image, then you can give 5.5.

[image: image79.png]Uit
st enter hers the
Required:

[Arakeen

And select the posi

I

The builder will be Aramin Keep, and the icon will be placed between the 5th and the 6th.
[image: image80.png]

Here is the result: the buildpic of my unit (mage archer) between the catapult (n. 5) and the architect (n. 6).
4: If you want your unit to be build by other builders, repeat step 3 with "Optionnal Builder #2, #3,...".

5: If your unit is a buider, continue to step

6: If not, you can go to Features.

6: You are still here, good ! You have checked the "Yeh, my unit is a builder" didnt you ?

7: Now you must choose which units can be built. Short names are required.

8: click on Add and select the first unit. It will appear in the first place in the build menu. Repeat for all the units you need. Use Move up / down to change their order.

[image: image81.png]IV b, my unitis & buider|
Unit

Enter every unit your urit can build and s posiior:

Add
[ARACAN

Edt

Mave Up

Mave Down

Remave

Note: Here, dorituse umbers with
commsif you choose to et youseit
those fes.

The first unit we will be able to build is ARAPULT on this example. The second is ARACAN.

Info
I: Create files manually
1 : first, you have to create a folder with the short name of the unit that will build yours, in the canbuid fodler.

2 : Use the notepad to type this :

[Menu]
{
Priority = X;
}
X is the number where the build pic will appear in the build menu.

3 : save this file under the name shortname.tdf, in the shortname subfolder.

4 : if your unit is a builder, create a folder with the short name of your unit.

5: create as much .tdf files as your unit can build :

[Menu]
{
Priority = X;
}
X is the number where the build pic will appear in the build menu. 1 for the first, 2 for the second...

6 : Save all these files under shortname.tdf in the folder you just created.

[image: image82.png]4] arabowa.tdf - Bloc-notes [[=] E3|
Fichier Edition Recherche

Priority=5.5;

An example this file: my example unit (arabowa) is between the 5th and the 6th picture.

	FEATURES

Description
This folder contains two other folders : "All worlds" and "Corpses".
[image: image83.png]B+ Features
2 Allworids
(] Compses

1 : Corpses
In this folder you will find a .tdf file, named with the short name of your unit, followed by "_dead" (ex: arabowa_dead.tdf). This file holds the informations about the corpse of your unit.

2 : All Worlds
In this folder is a .tdf file, named with the short name of your unit, followed by "_stone" (ex: arabowa_stone.tdf). This file contains the informations about the petrified body of your unit. If your unit do not leave any corpse when it dies, like the Monarch, you should not fill the following.

Action
1 : Dead Unit (eq. to Corpses)
You just have to fill all the boxes. Here is their meaning.

	animatable
	Tells whether this corpse can be brought back to life, in the form of a Ghost ou a Ghoul. (1 = yes, 0 = no)

	damage
	Amount of damage points the corpse can stand before disappearing

	description
	English description : what is put on the screen when you will point the corpse with the mouse

	objects
	Name of the .3DO object that will be used to render the corpse. Usually, it is the short name followed by _dead

	footprintx
	Size of the corpse along the x axis, when the unit faces the bottom of the screen

	footprintz
	Size of the corpse along the y axis, when the unit faces the bottom of the screen

	height
	Height of the unit's corpse

	noshadow
	Does this corpse drop any shadow ? 0 = yes, 1 = no

	blocking
	Does this corpse block the mouvement of the other units ? 1 = yes, 0 = no

	decomposetime
	Amount of time it takes for the corpse to disappear

	resurectable
	Is this unit resurectable ? 1 = yes, 2 = no

	reclamaible
	Can this corpse be swept by other units ? 1 = yes, 0 = no

	world
	Leave "all worlds"

	hitdensity
	Probability (%) that a direct shoot goes through the corpse. 100% : the corpse blocks everything, 0% nothing.

2 : Stone Unit (eq. to All worlds)
	world
	Same as dead unit.

	damage
	Same as dead unit. Most of the unit have 4000 here.

	description
	Same as dead unit.

	object
	Same as dead unit.

	footprintx
	Same as dead unit.

	footprintz
	Same as dead unit.

	height
	Same as dead unit.

	noshadow
	Same as dead unit, 0 in all the cases.

	blocking
	Same as dead unit, 1 in all the cases.

	hitdensity
	Same as dead unit, 100% in all the cases.

	resurectable
	Same as dead unit.

	reclaimable
	Same as dead unit.

	isstone
	1 all the time.

If your unit does not leave any corpse when it dies, or when it cant be petrified, leave all these blank.

Info

I: How to edit this folder manually
It allows to add variables that are not accessible from TDF Edit. There are some.
1 : In the folder "features", create two new folders : "all worlds" and corpses"

2 : Create a file named shortname_stone.tdf in the folder "all worlds" and a file "shortname_dead.tdf" in the folder corpses. Dont do anything if the unit does not leave anything when it dies.

3 : Write this in the "stone" file :

[shortname_stone]
{
variable1= X;
variable2= X;
...
}
Where shortname stands for the short name of the unit. Replace _stone by _dead for the other file. variable1, ... are variable names that you can choose among the followings, and X are the values you want to give to these variables. You can do that by copy / paste with existing files, taken from existing .hpi.

	Variable
	Description
	Valeur possible

	animatable
	Leave 1
	0 or 1 (animatable=1;)

	blocking
	Does this corpse block the mouvement of the other units ? 1 = yes, 0 = no.
	0 or 1 (blocking=1;)

	damage
	Amount of damage points the corpse can stand before disappearing.
	Positive integer (damage=4000;)

	decomposetime
	Amount of time it takes for the corpse to disappear.
	Positive integer (decomposetime=30;)

	description
	English description : what is put on the screen when you will point the corpse with the mouse.
	English name (description=Archer Stone;)

	footprintx
	Size of the corpse along the x axis, when the unit faces the bottom of the screen.
	Positive integer (footprintx=2;)

	footprintz
	Size of the corpse along the y axis, when the unit faces the bottom of the screen.
	Positive integer (footprintz=2;)

	height
	Height of the unit's corpse.
	Positive integer (height=0;)

	hitdensity
	Probability (%) that a direct shoot goes through the corpse. 100% : the corpse blocks everything, 0% nothing.
	Integer between 1 and 100 (hitdensity=100;)

	isstone
	Is it a petrified corpse (1) or not (0)
	0 or 1 (isstone=1;)

	noshadow
	Does this corpse drop any shadow ? 0 = yes, 1 = no.
	0 or 1 (noshadow=0;)

	object
	Name of the .3DO object that will be used to render the corpse. Usually, it is the short name followed by _dead for a corpse and _stone for a petrified unit.
	Name of the .3DO objetc, without the extension (object=arabowa_stone;)

	reclaimable
	Can this corpse be swept by other units ? 1 = yes, 0 = no.
	0 or 1 (reclaimable=1)

	resurrectable
	Is this unit resurectable ? 1 = yes, 2 = no.
	0 or 1 (resurrectable=1;)

	world
	World in which all this take place. Used in Cartographer.
	Always "All worlds" (world=All worlds;)

4 : Save these in the right folder. .

[image: image84.png]& arabow:
ichir_Edition

[arabova_dead]
<

animatabl
danage=100;
description-dead;
object-arabowa_dead;
Footprintx-2;
Footprint:
height-0;
noshadou=1;
blocking=0;
deconposetine-30;
resurrectable=1;

reclainable=1;
world=All Worlds;
hitdensity=100;

Example of such a file, here is the one of the '"arabowa".

	GAMEDATA

Description
When refering to a simple unit, this folder does not contain any .tdf file. But in the case of he Rictus, there is a moveinfo.tdf file in it. This file defines a new way of walking. It is not recommended to edit this kind of file, as this new moveinfo.tdf replaces the previous one. If all the unit makers add their own things, all these informations are going to override each other, resulting in a terrible mess. Ta:Kingdoms takes into account only the most recent version of this file. So we will not explain how to edit this file.
But the Gamedata folder holds a "soundclasses" sub-folder, that holds all the informations about the sounds the unit will emit. This subfolder is the same as the "sounds" folder, which holds the sounds your unit will emit.
[image: image85.png]=0 GameData
] soundclasses

Action
1: you have to choose a sound (see step 2) for each action your unit can perform. That is : attack, default, guard, move, patrol, select. If you want to add a custom sound, please refer to section sounds.
To listen to existing sounds, open the file "english.hpi" (or the one that matches your language) with HPIView, and double-click on the file.

2: After having choosen a sound (or 2) for each action, you have to select this sound in the liste under the action it is linked to. If you want to add a second one, check "hum, i'd like to add one more sound for this action" , and select a second sound in the new list.

3: You have to choose the priority of the sounds. If there is only one sound, the priority of that sound is 1. Simple. If you selected two sounds, out 1 for the rare sound, and a higher number for the other one. If you put 1 and 4, that means that the second souns will be played 4x more than the first one.

4: You then have to select the priority for all the sounds of the unit. When this unit is in a group, this priority will decide which unit one will hear. Usually we find here a 1, apart for the dragons and the monarchs.

[image: image86.png]Attack:
Select sound, ot enter new one (New sound fles have to be added in Sounds tabs)

[Toncara =] Firstsound.
Select ity for this sounc: [T 2] Priori
by %] Priority of the first sound
¥ Hum, idike to add one more sound fo this acton
toacda Selectsound, or enter new one (New sound fies have (o be added n Sounds tabs)

=] =] secondsound
sound!
O Selectpiiyfr s sound. [T 3] rioity o the second sound.

In our example, for the action Attack, the first sound is Tonearan, and the second one is arabuildmov3.
The frequency for both is the same.
Info
I: The bongs that one can hear in TA:K are :
Toneara for Aramon,
Tonetar for Taros,
Tonever for Veruna,
Tonezon for Zhon,
Tonenpc for the non-player characters.

II: Manually editing this file

1 : In the folder Gamedata, create a subfolder "soundclasses". Type this in a notepad :

[NOMCOURT]
{
prioritized=1;
[attack]
{
son1=X;
son2=Y;
}
[default]
{
son1=X;
son2=Y;
}
[guard]
{
son1=X;
son2=Y;
}
[move]
{
son1=X;
son2=Y;
}
[patrol]
{
son1=X;
son2=Y;
}
[select]
{
son1=X;
son2=Y;
}
}

2: Replace SHORTNAME by the short name of your unit, "sound1" by the sound you want to hear with this action, and X by the priority of that sound. If there is a second sound, use sound2 and Y.

3: Save this file in the subfolder soundclasses with the name SHORTNAME.tdf.

[image: image87.png]4] arabowa.tdf = [-1o[x]
EENEN

[ARABOVA]
<

prioritized=1;

[attack]
<
Toneara=1;
N
[default]
<
Toneara=1;
N
[guard]
<
Toneara=1;
N
[move]
<
Toneara=3;
araboumoui=1;
N
[patro1]
<
Toneara=1;
N
[select]
<
Toneara=3;
arabousel3=1;
¥

The sound file "arabowa.tdf" of our example "arabowa".

	OBJECTS3D

Description
This folder contains the different 3D models of your unit. There are up to three : one for the unit itself, one for the corpse, one for the petrified version. These models are made with 3DO Builder +, which adds together models from .LWO files and textures. To make a unit, you need a 3D soft.

[image: image88.png]

The 3D model of arabowa

Action
I: In your 3D soft
1: First, you have to create two 3D models for your unit. The first will be used for the unit and its petrified version, the other one for its corpse.

2: Center your 3D models, the feet at level 0 on the vertical axis, and the center on the 0 along the X and the Y axis.

3: Once it is done, to export it to 3D0 Builder +, read below.

[image: image89.png]Perspective

As an example, I will not use the traditionnal "arabowa", because there are too many arts and faces in it, and the figures would have been messy. We will use a missile launcher vehicle, a secret weapon from Elsin's arsenal. Errr, no, I guess its from TA.

Important note
The X axis is the axis that goes from left to right, the Y axis is vertical, and the Z axis is from the front to the back.

[image: image90.png]mmmmm

The axes in TA:Kingdoms

II: Exportation to 3Do builder + 2.0
1: Divide up your model into fixed parts that will be animated. For instance, separate the arm from the torso, from the leg, etc... Save each part in a separate .LWO file. Do this for the model of the unit, not for the dead and the stone model. They are not animated !

	[image: image91.png]

	[image: image92.png]

	[image: image93.png]

	In the example of our missile launcher, we have three different parts : the chassis (1), the guns (2) and the turret (3). In TA:K it is quite frequent to see 20 parts models of units...

2: Then, you have to reopen each of these file, and center each part in it. This has to be done because the center of the axises is the center of the rotation of the part.

[image: image94.png]

 INCLUDEPICTURE "E:\\tak\\tutorial\\TutorailTAKeng\\objects3d\\piececentree.gif" * MERGEFORMATINET [image: image95.png]

Here, wa have centered the turret.
3 : All the .LWO files are now going to be imported in 3DO Builder +.

Note about *.DXF files
To make your unit, you can use *.DXF files too. But you must first "soap" this files before. To do this, lunch Visual Soap and configure it like this screenshoot.
[image: image96.png]isual Soap
Options Help
Fiein

[C:Mes Dosumentsitem =)

File aut

[C:Mes Dosumentsitem =)

Soapit!

Browse.

Browse.

I
T~ Stip Header
¥ Remove lines.
£ =)t
™ Add stra 3DFACE
= | Siperiezn)

Dififo—————

#Faces [

"File in" is your *.DXF file and "File out" is the modified *.DXF file. Click on "Soap it !" to modify your file and adapt it to 3Do builder.

III: Importation in 3Do Builder + 2.0
1: Launch 3DO Builder +. On the top left is found the tree of the pieces of your unit. For the moment, there is only one : the basis, which is normal. This tree represents how the pieces are linked together. When a piece at a given node of the tree moves, then all the pieces under this node move also. At the bottom of the window, you will find all you need to adapt your model to TA:K. On the right, are the textures you can map on your model. As 3DO Builder can manage TA and TA:K units, dont forget to select "TA:K-all" in the first pull down menu. At the center of the window, are the four views of your unit : top front and right, and a 3D rendered view. You can change this view between Wire frame, bare frame, shaded frame and textured frame.

2: Let us begin by rebuild our unit. To create a new piece, click on "Objetcs -> create object", and type in the name of your unit. It will appear in the tree on the left. Then, select this piece in the tree, and click "Objects -> import object" to import a .LWO file. Your part should now appear in all the views. You can "click and drag" in the 3D view. Adjust the position of that part, using the icon with the little arrows on it. You can then add all the other parts on that one. On the side views, the selected part is in red, the other one in blue, the blue square represent the rotation axis.

[image: image97.png]Fie View Objects Special Misc. Help

DS HEHE g @a e

x|

e [
baseb "
[|
Faces | Object| Advanced. | [Top = foht >z
g i
Face [154
—_
Texstue NN
Ofentation [0 2]

|
E

basiiskstone

Ready baseh [(19,0, 28 |

The first piece, the chassis has ben imported, on can see it int the pieces tree, it is called "baseb". Dont worry if it is too big or too small, we will take care of that later. Use the zoom to adjust it.
3: Repeat the previous step until all the unit is made. Be careful : never import a .LWO file on the first piece "base", as it is the piece who will give the green circle (square in TA) when the unit will be selected. On the wire frame view, the unit should now appear.

[image: image98.png]Fie View Objects Special Misc. Help

D@ EE g mwan @&l K

=y o =
& baseb "
& tow
misie
Faces | Object| Advanced. | [Top = foht >z
g i
Face [0T1
$
Texstue NN
Ofentation [0 2]

|
E

basiiskstone

Ready

missie [(0.4,2) |

The unit is build. Here it is the piece of the missile tube that has been selected. One can see the center of rotation (blue square).
4: Now you need to adjust the scale of the unit. Select "base" in the pieces tree, then "Special -> Change Ground Plate Size...", and fill in the size you want to give to your unit. . The first figure corresponds to the X axis, and the second one to the Z axis. For instance, the Mage archer is 2x2, and the Gold Dragon is 4x4. Multiply this size by 12 (32x32 for the Mage Archer and 64x64 for the Golden Dragon). Click apply, the size of your unit shold have changed.

[image: image99.png]Untitled.3do - 300 Builder

[[=] B3
File View QObjects Special Misc. Help
OB @ mwu @a & K[| K [TacK a1 <]
e[e
& baseb i wm |
e

basiiskstone

Fces | it Advanced

[Fight o=
i

Face [011

_

Testwe "oNe

Orientation

Apl.

Colo

missie |(0,25,0)

This rocket launcher is of size 2x3, thus I put 32x48. One can see that the unit is a bit small...
5: You then have to adapt the size of the window. Click on the first piece after the piece "base", then click Advanced. On the left, click "apply transformation to child object". Then, using the scale factor function, try to adapt the size of your unit to the one of the window. Then click on All to apply that on all the views.

[image: image100.png]File View QObjects Special Misc. Help
OB @ mwu @a & K[| K [TacK a1 <]
Erra e

& baseb " {t
& tour =
isse

basiiskstone

Faces | Obiest Advanced.

St [Veton] Ot

Erly Trnsiomators
E to chid objects

R
Sl Whih 7
[=]

[Rotation Angle: [300 &

bt i i
Fon | Top | P

Ready [baseb [(22.0.9) | /)

Ou example, zoomed in. The scale factor is 4,5.
6: Lets continue with the texture mapping. We just have one thing left : be sure that all the faces have the same orientation. If a face has the wrong orientation, we will not see any texture on it. Choose the 3D view, and apply a dummy texture on all the faces. Repeat the operation for each piece, apart from "base". Now, in the 3D view, the object should appear with the same texture ofr its pieces. If one face has no texture, that means it is oriented in the wrong way.

[image: image101.png]Untitled.3do - 300 Builder
Fie View Objects Special Misc. Help

[_[OIx]

D@ EE g mwan @&l K

o [
& baseh i
S tour
missile

[T =

Fces | it Advanced

Face [011

Testure

[Fight -2

Orentaon [5]

Ready missle [(0,33,19) |

On this example, some textures (turret) are on the wrong side.
7: To put the faces on the correct sense, select them one by one, and hit F2. That's all.

	[image: image102.png]

	[image: image103.png]

	[image: image104.png]

	One face to be turned...
	A F2 later, it is done...
	Some more F2 later, our model is correct

8: You can now apply the texture you want. For this, select a face, double-click on the texture you want to apply. You can also apply a simple color, with the "Color" option.

[image: image105.png]

The textured missile launcher. Ok, those are TA textures, but it is the same for TA:K.
9: Here it is ! Your 3D model should be finished. Now you can save it under the short name or your unit, and do the same for the stoned version and the corpse. The stone texture is called "basiliskstone". The corpse should be save in shortname_dead.3do, and the stone version in shortname_stone.3do.

The 3D models or our great arabowa

	[image: image106.png]

	[image: image107.png]

	[image: image108.png]

	The body : arabowa.3do
	The corpse : arabowa_dead.3do
	The petrified body : arabowa_stone.3do

IV: Import your three files .3do with TDF Edit
1: Click on the three "Open" button to select the three 3D models you just made.

2: You can edit your model by clicking on "Edit". It will automatically launch 3DO Builder +.

3: You can use an existing corpse or stone body by clicking on "I use an already existing..." and give a short name to the 3D object. Remind that you have to configure the Features for that.

THE NAME OF THE .3DO FILE IN THE BOX SHOULD ALWAYS MATCH THE ONE UNDER EDIT.

[image: image109.png]pen 300 il for your it
[C\Tempharsbowa'obiectsIDVARABD | Open

Edt

This flename can be the same than you erfered in the
obiectrname value of the FB f:

Open 300 fie for dead urit
[C\Tempharabowatobiects3Dtarabowa | Open

ARABOWA

Edt

This fleniame can be the ssme you entered in the object
value of the Dead Un, in Features Panels:

Open 300 fie for store urit:
[C\Tempharabowatobiects3Dtarabowa | Open

arabowa_dead

Edt

This fleriame can be the same you ente in the object
value of the Stone Uni,in Features Parels:

arabowa_stane.

Tips: if you want to use 300 file
who'sina Kingdoms 's package
{Datahpi,... check ' use an
aleady. " checkbos.Inthis case,
enter a5 flename onl the name of
the 3D fe [not the patf)

T~ 1 use an eady erising object
fin datahpi)

T~ 1 use an eady erising object
fin datahpi)

Info
I: Description of 3do Builder
3DO Builder + has many other features that the one described here. All the features are here.

II: TA:Kingdoms textures creation for 3DO Builder +
1: Open the Data.hpi file, with HPI View

2: Create a temporary folder called "textures"

3: Save all the files of the textures folder of the data.hpi in the folder you just created.

4: Launch HPI Pack, select your temporary folder in "Directory to pack", and give a name "Textures.ufo" to the new file you are creating. Save this file in your TA:K directory. Select TA and TA:CC compression method.

5: Click pack, verifiy that the file has been created.

6: Launch 3DO Builder + and select TA:K all. If all went right, you should see a list of textures at the top right of the window. If not, or if the colors of the textures are not correct, that means that it did not work properly.

These steps are well-detailled in the file Compatibility.txt, from the .zip of 3DO Builder +.

	SCRIPT

Description
The .COB files are found in this folder. It contains the animation scripts of the unit. This script is in fact a .BOS file, that has to be compiled into a .COB file. The TA:K Cobbler is not published yet.

Action
I: Creation of the script file (.BOS) and compilation into .COB
This step in not realizable for the moment, it will be described later.

II: Importation of the script in TDF Edit
1: Create your script .BOS and compile it a in .COB file, called shortname.cob.

2: In TDF Edit, click on the first Open button, to give your .COB file, and on the second one to give the .BOS file. The .BOS file is not needed, but if you put it here, you are sure you will not loose it !

[image: image110.png]= TDFEdit 1.0
Fles Options._Help

[_[CIx]

eS| o A | e e | e
= oo
il Anims p
£ canbuild
Features SORRY
Somadata i e G A S R, Syl

g objects3D.
scipts
saunds
3 tanslate
79 urits

45 Misc

Bt you can chaose the fie used as scrint (COB

[C\Tempharabowatscipts\arabona.cob | Open

Be carfl ths fle must have the same name than yout FBI f:
arabowa

1fyou wank o distibute sourcs with your uit add your BOS fle here:

T —

Note: i you choase a flename who i nat the name of your unt,
finame wil be automatcaly renamed whle saving

£

£

«<Prev. Newt>>

[Visk out web site (tp:/ /s mlimaria.comitekingdoms/)

The files "arabowa.cob" and "arabowa.bos" in TDF Edit.

Info
I: Manually editing this file
1: Create the .BOS and .COB files, as explained is the previous section.

2: Place these two files in the Scrips folder of your unit.

	SOUNDS

Description
This folder holds the .WAV files of the new sounds you can add. You are advised to use file names in majuscules, without any spaces in them. These names will be used in the TDF file of the soundclasses folder. The sampling rate of the files are : 11 025 Hz, 8 bits, Mono, Microsoft RIFF Wave.

Action
1: You need to have a .wav file ready to be put into TA:K. Save it using a 8 letters name, non special caracters, no space.

2: Click Open, and select all the files you want to add.

3: Write down the names of the sounds, and go to the Gamedata section to add them.

4: To add new sounds, do as explained in the Gamedata section, but dont select anything in the list. Copy the filename in the right box, respect min / maj, and do NOT put the .wav extension.

Info
I: How to edit this folder manually
1: In the folder "sounds" of your unit, put the sounds that you want to add.

2: You can use these file name in the section "gamedata -> soundclasses"

	TRANSLATE

Description
Cavedog has noticed that on the earth, not everybody was talking english. So they decided to add multingual support to their games. So, TA:K exists in five languages : English, French, German, Italian and Spanish. How does it work ? In fact, when the game is launched, it is in english. Once everything is in memory, the engine loads all the files of the Translate folder, and read the translation of the texts and names. The language you have installed is recorded in the Windows Registry.

Action
1: Put in the first box the english name of your unit, that will be recorded in the .FBI file of the Units folder.

2: Put in then the names in the other languages in the right boxes.

3: Do the same for the corpse and the stone body, apart from the first one, chosen in the features section.

Info

I: How to manually edit this file
You can translate things that you cannot reach which TDF edit.

1: With a notepad, write all this :
[ENGLISH_NAME]
{
german=TRADUCTION;
french=TRADUCTION;
italian=TRADUCTION;
spanish=TRADUCTION;
}
2: Replace ENGLISH_NAME by the word you want to translate, and TRADUCTION by its translation into the given language.

[image: image111.png]& Sans titre - Bloc-notes [-1o[x]
Fichier Edition Recherche 2
[Archer] |
{
German = Bogenschiitze;
French - Archer;

[archer

Italian = Arciere;
Spanish = Arquero;

3

corpse]

<

Gernan = Toter Bogenschiitze;
French = Cadavre d*archer;
Italian = Cadavere arciere;

Spanish = Caddver de Arquero;
3

[stone archer]

<

German - Uerst. B-Schiitze;
French - Archer pétrifié;
Italian - frciere di pietra;

Spanish - Arquero de Piedra;
>

Example of a file from the translate folder

II: How to change the default language
Beware of the following ! Windows is an unstable OS, tweaking the registry without knowing what you are doing can lead to major crashes, definitive loss of data and programs, hours of reboot, reformats and numerous reinstallations of all your PC and hard drive. And terrible headaches. And, worst of all, big laughs from your linuxians friends. Furtive Fox, GFRUIT Rene and l'Arm à l'œil have warned you, and cannot be taken responsible for any damage to your computer or your health. If you want to have a complete, say, Italian game, you also need the file Italian.hpi in your TA:K installation directory.

1: Open the registry *** BEWARE OF WHAT YOU DO NOW *** No undo is available in this process. Startup -> execute, then type in regedit and return. You are in the registry editor.

2: In the left tree, chose HKEY_CURRENT_USER -> Software -> Cavedog Entertaiment -> Kingdoms -> InterfaceOptions, double click on language.

[image: image112.png]Editeur du Registre [_[OIx]

Regste_Ediion_Alfichage 2

513 Poste de taval =] [Nom Dormées
£ HKEY_CLASSES_RODT ELE {vaeut ron déine)
=0 HKEY_CURRENT_USER 8] ChatLevel 0x00000001 (1)
22 AppEvents [64]DisplaynSereent:.. 0x00000000 (0)
2 e ElGamespeed 000000014 (20)
3 ralLoctonits B
2 sl (liaiTontnes 000000003 10)
O o lscoltpeed 000000020 32)
21 Remotehcosss 0x0000000a (10)
£ Software 000000001 (1)
e (B8] useLeClckliace 0:00000001 (1)
2 Adobe
{2 ahead
2 Alsie

{23 Annifilator

3 Aureate

{23 bleem

= Cavedog Entertainment

=3 Cartographer
{2 Recent File List
{2 settings
{2 WindowPostions

=2 Kingdoms.
{23 ConsoleDptions
{2 GameOptions
/2N Intefaceptions
{2 MusicOptions
{2 RendererOptions
{23 Skimish GameDptions
{2 SoundOptions
{2 VisualOptions

5 K —

[Poste de iavai\HKEY_CURRENT_USERS oftware\Cavedog Entertainment\Kingdoms\Interfaceptions

N

3: Change the value ENGLISH into FRENCH, or GERMAN, or ITALIAN, or SPANISH. Click Ok. That's all.

[image: image113.png]de la chaine.

Hom de la valeur

oo

Données de la valeur

[

Annuier

Here it is, TA:K in french !

	UNITS

Description
This folder contains a .fbi file that holds all the informations on the units parameters : name, resistance, speed, type, weapons, ...

Action
1: Click on Create in TDF Edit to create a new FBI file.

2: Click edit to edit this file.

3: Edit the .fbi file. Follows explainations on each variable. Click File -> Save and exit when it's done.

4: Edit the weapons part, explain below.

Info
I: The variables of the .fbi files
If you dont know which values to give to the variables, take a look at the existing .fbi to have an idea.

	Valeur de FBI
	Explication
	Variable

	Description
	
	

	Name-
	Long name of your unit
	name = Mage Archer;

	Description (side)-
	Side or description of your unit
	description = Aramon;

	Side-
	Side of your unit
	side = ARA;

	Unit Category-
	Category of your unit: ARA = Aramon, VER = Veruna, TAR = Taros, ZON = Zhon, MON = Monster, NPC = Non-playable unit, ATTACK = can attack?, Magic = is unit with mana?, FLY = Flying unit, FACTORY = can your unit build?, Monarch = Monarch
	category = ARA ATTACK;

	Unitname-
	Short name of your unit
	unitname = ARABOWA;

	Unit's 3do-
	*3do file of your unit, without the extension *.3do (generally it's the short name of your unit)
	objectname = ARABOWA;

	Unit Version-
	Version of your unit
	version = 1.2;

	Unit ID
	Number of your unit between 1 and 9999, this number must be unique
	unitnumber = 1995;

	Unit Capabilities #1
	
	

	Does the unit activate when build
	Does the unit activate when build (the gate,...)?
	activatewhenbuilt = 1;

	Does the unit attracts gods
	Does the unit attracts gods?
	attractsgods = 1;

	Is the unit a builder
	Is the unit a builder?
	builder = 1;

	Can the unit NOT aid with the construction of other buildings/units
	Can the unit NOT aid with the construction of other buildings/units?
	builderlimited = 1;

	Can the unit capture other units
	Can the unit capture other units?
	cancapture = 1;

	Can the unit attack
	Can the unit attack?
	canattack = 1;

	Can the unit stop
	Can the unit stop?
	canstop = 1;

	Can the unit cloak
	Can the unit cloak?
	cancloak = 1;

	Can the unit fly
	Can the unit fly?
	canfly = 1;

	Can the unit guard
	Can the unit guard?
	canguard = 1;

	Can the unit hover
	Can the unit hover?
	canhover = 1;

	Can the unit transport other unit
	Can the unit transport other unit?
	cantransport = 1;

	Can the unit load other unit
	Can the unit load other unit? (for a transport unit)
	canload = 1;

	Can the unit move
	Can the unit move?
	canmove = 1;

	Can the unit patrol
	Can the unit patrol?
	canpatrol = 1;

	Can the unit clean (reclaim)
	Can the unit clean (reclaim)
	canreclaim = 1;

	Can the unit raise dead units into ghols
	Can the unit raise dead units into ghols?
	cananimate = 1;

	Can the unit bring units back to life
	Can the unit bring units back to life?
	canresurrect = 1;

	Can the unit NOT be captured
	Can the unit NOT be captured?
	cantbecaptured = 1;

	Can the unit NOT be turned to stone
	Can the unit NOT be turned to stone?
	cantbestoned = 1;

	Unit Capabilities #2
	
	

	Is this unit a gate
	Is this unit a gate?
	gate = 1;

	Is this unit a ghost
	Is this unit a ghost?
	ghost = 1;

	Does this unit hover while attcking
	Does this unit hover while attcking?
	hoverattack = 1;

	Does this unit become a features when build (walls)
	Does this unit become a features when build (walls)?
	isfeature = 1;

	Does this unit NOT have a shadow
	Does this unit NOT have a shadow?
	noshadow = 1;

	Does this unit NEVER become a veteran
	Does this unit NEVER become a veteran?
	noveteran = 1;

	Can this unit be turend off or on
	Can this unit be turend off or on?
	onoffable = 1;

	Should ennemy units target this unit
	Should ennemy units target this unit?
	shootme = 1;

	Does this unit NOT tilt over uneven terrain
	Does this unit NOT tilt over uneven terrain? (1 for walking units)
	upright = 1;

	Does this unit automatically switch weapon when out of mana
	Does this unit automatically switch weapon when out of mana? (for unit which use mana for weapon)
	weaponswitching = 1;

	Can the unit float on water
	Can the unit float on water?
	floater = 1;

	Can the unit NOT be transported
	Can the unit NOT be transported?
	cantbetransported = 1;

	Health/Armor/Mana #1
	
	

	Body Type-
	Type of body: armor = armor; flesh = without armor; stone = stone; scales = with scales; wood = in wood.
	bodytype = flesh;

	Dammage Category-
	!!!!
	damagecategory = human;

	Maximum Mana-
	Max mana for the weapons.
	maxmana = 120;

	Mana recharge Rate-
	Mana recharge Rate.
	manarechargerate = 1.4;

	Maximum Hit Points-
	Résistance of the unit.
	maxdamage = 1421;

	Heal Rate-
	Heal Rate
	healtime = 2;

	Experience Points-
	Experience points giving to the unit which kill your unit.
	experiencepoints = 20;

	Health/Armor/Mana #2
	
	

	Cloak Cost Standing-
	Cloak Cost when your unit is standing.
	cloakcost = 50;

	Cloak Cost Moving-
	Cloak Cost when your unit is moving.
	cloakcostmoving = 500;

	Minimum Cloak Distance-
	Minimum Cloak Distance. (in pixel)
	mincloakdistance = 50;

	Mana Generated-
	Mana créated by the unit
	mogriumincome = 8.2;

	Mana Stored-
	Mana Stored.
	mogriumstorage = 5000;

	Blood Color 1-
	First color of blood.
	bloodcolor1 = 160 30 0;

	Blood Color 2-
	Second color of blood.
	bloodcolor2 = 160 30 0;

	Blood Color 3-
	Third color of blood.
	bloodcolor3 = 160 30 0;

	Stone-
	Name of the *3do file of your stone corpse.
	stone = arasword_stone;

	Corpses-
	Name of the *3do file of your dead corpse.
	corpse = arasword_dead;

	Misc Unit Variable #1
	1
	

	Acceleration-
	Accélération of the'unit
	acceleration = 10;

	Maximum speed-
	Max Speed
	maxvelocity = 1.1;

	Brake rate-
	Brake rate (- than 1 = short turn, + than 10 = large turn)
	brakerate = 0.15;

	Maneuvering Distance-
	Max distance for maneuvring (to avoid a stone for example, or to attack an other unit)
	maneuverleashlength = 500;

	Turn In Place Rate-
	Turn Rate When standing
	turninplacerate = 2500;

	Turn Rate-
	Turn Rate When moving
	turnrate = 3000;

	Cruise Altitude-
	Cruise Altitude of a flying unit
	cruisealt = 150;

	Build Cost-
	Build Cost
	buildcost = 43944;

	Build Time-
	Build Time
	buildtime = 8755;

	Mission When Built-
	standby for all the unit, exept VTOL_standby for flying unit.
	defaultmissiontype = Standby;

	Misc Unit Variable #2
	
	

	Radar Distance-
	Radar distance of the unit (in pixel): zone where your unit can see other unit in the minimap
	radardistance = 500;

	View Radius-
	Line of sight (in pixel)
	sightdistance = 135;

	Sonar Radius-
	Used in TA
	sonardistance = 500;

	Road Multiplier-
	Rate which increase speed when the unit is on a road
	roadmultiplier = 1.21;

	Water Multiplier-
	Rate which increase speed when the unit is in the woter (you can use number between 0 and 1 to reduce the speed)
	watermultiplier = 0.75;

	Order When Built-
	Not for building. Aggressivity of the unit: 0 = passive;1 = défensive; 2 = offensive.
	standingunitorder = 0;

	Building Order When Built-
	For building. Aggressivity of building units: 0 = passive;1 = défensive; 2 = offensive.
	unitstandorders = 2;

	Building Slope Slack-
	Max slope where a building can be build.
	maxslope = 15;

	Footprint X-
	Size of your unit (width)
	footprintx = 2;

	Footprint Z-
	Size of you unit (length)
	footprintz = 2;

	Misc Unit Variable #3
	
	

	Transport Unit Capacity-
	Capacity to load other unit. (number of unit)
	transportcapacity = 15;

	Transport Distance-
	Max range to unload unit (in pixel)
	transportdistance = 300;

	Transport Max Unit Size-
	Max size (width) of a unit loaded by your unit
	transportsize = 9;

	Transport Capacity-
	Capacity to load other unit. (in size of unit)
	transportsizecapacity = 40;

	Work Speed-
	Work speed
	workertime = 10;

	Water Line-
	Water line for a ship
	waterline = 8;

	Attack Run Lengh-
	!!!!
	

	Hover Attack Altitude-
	!!!!
	hoverattackaltitude = 10;

	Hover Attack Distance-
	!!!!
	hoverattackdistance = 15;

	Movement Class-
	Type of mouvement of the unit, look in other *.FBI for example.
	movementclass = GROUND2;

	Misc Unit Variable #4
	
	

	Total Unit Allowed-
	Quantity of this unit allowed (for example, 1 for sacred dragon)
	totalallowed = 1;

	Yard Map-
	Inside of a building and how can other unit walk on it (for example, unit can walk on the front of a factory, where they are build or unit can walk trough a door when it is open)
o: unit can't walk on it, never.
c: unit can walk on it if the unit is actived (like the door: unit can walk on it (in fact trough it) when the doo is open)
. (point): unit can always walk on it.
The first caracter is the left bottom place and the lastest is the right top place of the batiment
	yardmap = ooooooo ooooooo ooooooo ooooooo ooooooo ooooooo ooooooo ccccccc ccccccc ccccccc ccccccc;

	Copyright-
	allway Copyright 1999 Humongous Entertainment. All rights reserved
	copyright = Copyright 1999 Humongous Entertainment. All rights reserved.;

	Unknow Variable #1
	
	

	Soundcategory
	Name of the *.TDF file where the sound informations are stored.
	soundcategory = arafly;

	SoundClass-
	Name of the *.TDF file where the sound informations are stored.
	soundclass = arafly;

	Bmcode-
	1 for units, 0 for buildings
	bmcode = 1;

	Maxwaterdepht-
	Only fo TA
	

	Notargetcategory-
	The (type of) target that your unitr can NOT attack
	

	Tedclass-
	Type of unit (side)
	tedclass = Aramon;

	Wpri_badtargetcategory-
	The (type of) target that your unitr has difficult to attack (Wpri_ pour for the first weapon, Wsec_ for the second et Wter_for the third)
	wsec_badtargetcategory = VTOL;

	Unknow Variable #2
	
	

	Admultiplier-
	!!!!
	admultiplier = 2;

	Animatetype-
	!!!!
	animatetype = 0;

	Bankscale-
	!!!!
	bankscale = 1;

	Corpseadjustx-
	!!!!
	corpseadjustx = 2;

	Economybonus-
	!!!!
	economybonus = 5;

	Fireatwillrandom
	!!!!
	fireatwillrandom = 1;

	Moverate1-
	!!!! Used by flying units
	moverate1 = 1;

	Moverate2-
	!!!! Used by flying units
	moverate2 = 9;

	Pitchscale-
	!!!!
	

	Unknow Variable #3
	
	

	Transmaxunits-
	Like transportcapacity
	transmaxunits = 18;

	Standingmoveorder-
	Only for TA
	standingmoveorder = 2;

	Wind-
	!!!!
	wind = 100;

	Canbuild
	Like builder
	canbuild = 1;

	Commander
	Only for TA
	commander = 1;

	Bonus
	
	

	Used for "magic" effects of your unit (healing, increasing power, increasing armor,...) (for example, the sacred fire Zhon)

	Adjust Armor
	Influence resistance of the unit (protect your unit)
	[AdjustArmor]
{
Variableci-dessous
}

	Adjust Joy (life)
	Influence life of the unit (heal your unit)
	[AdjustJoy]
{
Variableci-dessous
}

	Adjust Attack
	Influence attack power of your unit
	[AdjustAttack]
{
Variableci-dessous
}

	Intensity of adjustment
	Intensity of adjustment: 1 = none, 2 = doubled, 0.5 = reduce by 2
	adjustment=45;

	Edge effectiveness
	How decrease the effect of the unit with distance (1 = none)
	edgeeffectiveness=1;

	Radius
	Influence zone (radius in pixel)
	radius=90;

	affects enemy
	Does the unit affect enemi?
	affectsenemy=1;

	Weapons
	
	

	Describe below, in part IV
	Describe below, in part IV
	

II: Manually editing the .FBI
1: Open the .fbi file with notepad, and type in the following :
[UNITINFO]
{
VARIABLE1=XXX;
VARIABLE2=XXX;
...
}
2: Replace "VARIABLE1=XXX; VARIABLE2=XXX; ..." by the needed values, you can find them all in the above tables. Just take the neede variables, and leave te others. To ease your task, you can take an existing .FBI file and tweak it as needed.

3: Save the file under the name shortname.fbi in the units folder of your unit. Click here to show the arabowa.fbi file

4: Now you have to edit the weapons of this file, as explained in the next section.

III: The weapons
You can edit the weapons from TDF Edit, but I think it is easier to do it with notepad, as the window openned by TDF Edit is a bit small, and you cant see the text in it. I did not take time to list all the possible variables (it will be done in the next version of this tutorial), so you would better take an existing FBI file and edit it.

1: Open the FBI file, and note [WEAPON1]for the first weapon, [WEAPON2] for the second one, and [WEAPON3] for the thrid one.

[WEAPON1]
{
VARIABLEWEAPON1=YYY;
VARIABLEWEAPON1=YYY;
...
[DAMAGE]
{
DOMMAGEDEL'ARME=ZZZ;
}
}
2: Replace "VARIABLEWEAPON1=YYY; VARIABLEWEAPON1=YYY; ..." by the variables you need for that weapon. Copy it from an existing weapon, you will avoid typos and the like.

	Variable de l'arme
	Description

	aimtolerance = 1024;
	!!!!!

	areaofeffect = 31;
	Area of effect (in pixels)

	builduptime = 0.5;
	!!!!!

	buttonimagedisabled = ArrowParalyzePU;
	Picture of the desactied weapon (no enough mana,...) if the unit have more than one weapon[image: image114.jpg]

To know the aviable pictures, open "data.hpi" with HPI View, the picures are in the folder "anims -> weaponpic" in *.JPG format

	buttonimagedown = ArrowParalyzePU;
	Picture of the weapon if the unit have more than one weapon: when the button is pushed[image: image115.jpg]

	buttonimageselected = ArrowParalyzeSBh;
	Picture of the selected weapon if the unit have more than one weapon[image: image116.jpg]

	buttonimageup = ArrowParalyzeSB;
	Picture of the weapon (by default) if the unit have more than one weapon[image: image117.jpg]

	damagetype = paralyzer;
	Type of damage inflicted by the weapon (look in *.FBI)

	decaytime = 3;
	!!!!!

	dontleadtargets = 1;
	!!!!! the weapon do not follow the target (to avoid turnig arrow)

	duration = 9;
	Time of effect of the weapon

	edgeeffectiveness = 0.7;
	!!!!!

	emittime = 45;
	Time of shoot of the weapon

	explosionclass = green_shockring;
	!!!!!

	firestarter = 1;
	Can the weapon trigger of a fire(1 yes, 0 no)

	gravityadjustment = 4.25;
	Influance of gravity on the weapon (for catapult)

	hweffect = fire;
	!!!!!

	innercolor = 255 255 255;
	Inner color of flash weapon

	middlecolor = 200 230 255;
	Middle color of flash weapon

	outercolor = 180 200 255;
	Outer color of flash weapon

	lightmap = small;
	How the ground is lighting by a shoot of this weapon

	lobpreferred = 1;
	!!!!!

	manapershot = 500;
	Mana used by one shoot

	maxvariation = 5;
	!!!!!

	minrange = 500;
	Min range for a shoot

	nimbus = 1;
	!!!!!

	noairweapon = 1;
	This weapon can NOT fire on air units (1)

	model = Araarrow;
	3D Model of the projectile (3do file)

	name = Bow and Arrows;
	Name of the weapon

	particlespersecond = 5;
	!!!!!

	radiusart0 = ring_fx_redA;
	!!!!! Used by earthquake weapon

	radiusart1 = ring_fx_redB;
	!!!!! Used by earthquake weapon

	radiusart2 = ring_fx_redC;
	!!!!! Used by earthquake weapon

	range = 450;
	Max range of a shoot

	reloadtime = 3;
	Reload time

	ringcount = 3;
	!!!!! Used by earthquake weapon

	ringdelay = 0.45;
	!!!!! Used by earthquake weapon

	ringduration = 1.2;
	!!!!! Used by earthquake weapon

	shadowart = weaponshad01;
	Show below in "shadowgaf"

	shadowgaf = shadows;
	*.GAF file which contains the animation of the shadow of the weapon. The name of this animation is in "weaponart

	shakeduration = 2;
	Used by earthquake weapon, duration of the earthquake

	shakemagnitude = 3;
	Pwer of the earthquake

	showeffect = 0;
	!!!!!

	soundhitclass = arrow;
	Sound

	soundhit = arrow08;
	Sound when the weapon hit the target

	spinheading = 150;
	!!!!! Center of rotation (show in "spinpitch")

	spinpitch = -3000;
	Speed of spinnig of the projectile of the weapon (for spinnig projectile, like the weapon of the aramon builder). Can be negative for a rotation in the other direction

	spritecount = 35;
	!!!!!

	subtype = Earthquake;
	Subtype of the weapon

	turnrate = 180;
	!!!!!

	type = Ballistic;
	Type of the weapon

	unitsonly = 1;
	Weapon affects just unit and not building

	variationtime = 2;
	!!!!!

	veteranlevel = 10;
	!!!!!

	veteranmodel = araham10;
	3D Model of the unit when the unit is a veteran

	wanderendart = flamevortexend;
	!!!!!

	wanderloopart = flamevortexloop;
	!!!!!

	wanderstartart = flamevortexstart;
	!!!!!

	waterexplosionclass = small water explosion;
	type of explosion when the weapon hit the water

	weaponart = cannbmed;
	Show below in "weapongaf"

	weapongaf = projectiles;
	*.GAF file which contains the animation when the weapon hit the ground. The name of this animation is in "weaponart

	weaponvelocity = 750;
	Velocity of the projectile

3: You must now fix the amount of damage this weapon inflicts. Replace "DOMMAGEDEL'ARME=ZZZ;" by "default = ZZZ;"to give the base power of the weapon. Then by using "nomcourt=ZZZ", you can adjust this damage as a function of the attacked unit.

4: Save your new .FBI file, that's all ! To show ARABOWA.fbi, click here (arabowa.fbi)

	MISC

Description
Here you can add a file like a readme but this file will not be readed by normal TA:K players because this file will be compressed with the unit.

Action

1: Click on "Open" to add a file and on "Remove" to remove it.

	COMPILATION OF THE UNIT

Now, you must compil your unit into a *.ufo file. Do not forget to change the TA:Kingdoms shorcut and add "-disablecavedogverification".

Compilation with TDF Edit
Just click on "Compress" in TDF Edit. Your unit will be compressed in the folder where you saved it. Now put this file "shortname.ufo" in your TA: Kingdoms folder.

Do not forget to check error by clicking on "Options -> Check Errors".

Compilation with HPI Pack
1: Open HPI Pack

2: Select the folder where you can find the "anims", "canbuild",... folders in "Directory to pack" box and give a name (the short name of your unit for example) with the extension *.ufo. in "Destination HPI File" box

Selectionnez le dossier ou se trouve tous vos dossier "anims", "canbuild",... dans "Directory to Pack" et le fichier *.ufo (n'oubliez pas de noter l'extention .ufo) où vous voulez compresser l'unité. Il n'est pas obligatoir de donner le nom court de votre unité au fichier *.ufo.

3: Select "TA:K" dans "Program" and click on "Pack"

	INSTALLATION AND CONFIGURATION OF THE PROGRAMS

I: HPI View by JoeD
This excellent piece of software can uncompress .HPI, .UFO, .CCX and .KMP files. These files contain all the infos TA:K needs to run. You need 1.9 version to be compatible with TA:Kingdoms.

[image: image118.png]HPI File
Fie Help

[_[OIx]

=4 C:Meuw\TA Kingdoms\AFyBuild ufo
=42 anims.
a
(=423 CANBUILD
{23 Araly
{23 AraPries
=14 features
23 all worlds
{20 Compses
=420 GAMEDATA
{23 soundclasses
{23 Objects3D
{23 Seripts
{23 sounds
{20 translate.
23 Units

Fie Nane [Type

Size

Arafyipg JPG fie

205

Installation:
Uncompress de .zip file in a fodler, and create the shortcuts you need.

II: HPI Pack by JoeD
This program can build .HPI, .UFO, .CCX and .KMP files. It is the little brother of HPI View, that does the opposite. You need 1.7 version for TA:K.

[image: image119.png]HPI File Packer [_[C1x]
Fie Help

Ditectory to pack:

Biowse.

Destinaton HP ie:

Biowse.

e Conpresion Hethed
I3 = [=
et

Installation:
As simple as HPI View. You need to uncompress the .zip in a folder. To make units compatible with TA:K, you just have to add "-disablecavedogverification" after kingdoms.exe on the command line of your shortcut.

[image: image120.png]Propriétés de TA

gdoms:

Général Raccour |

[

Type dela cible

Emplacement

Kingdoms

Appliation

T Kingdoms

Cible radomstKingdoms exe" disablecavedogvertication

Touche de

TAJewnTA Kingdoms”

[Fucun

Exsouter

Fengtie nomale <

hercher la cbl... | Changer dicane,

] mie |

The modified shorcut

III: TDF Edit by TA:Kingdoms Fr
This software will help you in all the creation process of your unit.

[image: image121.png]= TDFEdit 1.0
Fles Options._Help

[_[CIx]

eS| o A | e e | e
= oo
il Anims p
£ canbuild
Features SORRY
Somadata i e G A S R, Syl

g objects3D.
scipts
saunds
3 tanslate
79 urits

45 Misc

Bt you can chaose the fie used as scrint (COB

[C\Tempharabowatscipts\arabona.cob | Open

Be carfl ths fle must have the same name than yout FBI f:
arabowa

1fyou wank o distibute sourcs with your uit add your BOS fle here:

T —

Note: i you choase a flename who i nat the name of your unt,
finame wil be automatcaly renamed whle saving

£

£

«<Prev. Newt>>

[Visk out web site (tp:/ /s mlimaria.comitekingdoms/)

Installation
Uncompress the .zip in a folder, respecting the hierarchy of the fodlers / files. You need then to create two folders : one for the sounds, and one for the images.

Help:
To have this tutorial when you click on "Help -> Tutorial" ou CTRL F1,copy all this tutorial (don't change the files and folders names) in the subfolder "Tutorial" of the folder where you have installed TDF Edit.

Sounds :
- create a folder on the desktop named "taksounds"
- extract all the files from english.hpi (english version) or french.hpi (french version) or spanish.hpi, german.hpi, italian.hpi (guess which one is for the italian version ?) in the taksounds folder you just created. You can use HPI View to do this.
- In this folder, delete all the subdirectories, except the "sounds" one.
- Launch HPI Pack, selct your "taksounds" folder in "Directory to pack", and save that in your TDF Edit folder, under the name "sounds.hpi" (Destination HPI file). Select TA in "Programs", and click "pack".

Images :
- create a folder on the desktop, called "takpics"
- extract all the files from "data.hpi" (on your TA:K CD if you chose minimal installation), with HPI View
- delete all the directories from the "talpics" folder, apart from "anims"
- in this subfolder, delete all the subfolders, apart from "buildpic"
- launch HPI Pack, and pack the takpics folder in a file called "buildpic.hpi" in your TDF Edit folder.

IV: 3Do Builder + by Quantum
This programm is used to create units from .DXF or .LWO files. You need version 2.0 to work with TA:K. You also need a 3D modeler software that can save in .DXF ou .LWO formats.

[image: image122.png]File View QObjects Special Misc. Help
OB @ mwu @a & K[| K [TacK a1 <]
Erra e

& baseb " {t
& tour =
isse

basiiskstone

Faces | Obiest Advanced.

St [Veton] Ot

Erly Trnsiomators
E to chid objects

R
Sl Whih 7
[=]

[Rotation Angle: [300 &

bt i i
Fon | Top | P

Ready [baseb [(22.0.9) | /)

Installation:
Extract all the files from the .zip, and launch 3dobuilder+.exe to configure the program
- you should have created TA:Kingdoms textures, as explained in the objects3d section of this tutorial
- If you have the TA UnitViewer, you can use it here, but it will not work wth TA:K units. Click on File->Export yo Unit Viewer to choose the right Unit Viewer, compatible with TA:K units.
- Click on "View -> Set custom TA Location" and select the folder where TA resides (if you have it), and click on "View -> Set custom TA:K Location" to select the folder where TA:K is.
- if ou click on "View -> Display options", you can choose the colors of the layout, and also diable the 3D View. You should be aware that this view is repsonsible for 80% of this soft crashes.

To enable the 3D view, you need to have OpenGL installed on your PC. It is available from Quantum's site.

V: Visual Soap
You need it if you want to use *.dxf file in 3Do Builder +

[image: image123.png]isual Soap
Options Help
Fiein

[C:Mes Dosumentsitem =)

File aut

[C:Mes Dosumentsitem =)

Soapit!

Browse.

Browse.

I
T~ Stip Header
¥ Remove lines.
£ =)t
™ Add stra 3DFACE
= | Siperiezn)

Dififo—————

#Faces [

VI: Gaf Builder Pro par C_A_P
Use it to create custom textures for your unit and custom features for your maps.

[image: image124.png]araport gaf
Fie_Images

Dptons_Help

[_[CIx]

Ol=lal ole| =

Name.

Arimate | Frames [5u

Hoo

Yes 1 0

Frame Irfamatian

~FoolpiintInformation
% z

ForitsEing? b

COptons————————
Compress [~
Recod [

Width Height '
[E3 [E3
(Posion fomalion——
Rposton [2 =]
ooston [2 =]
Tamerate —
Famerste [T =

Sublisme >

Installation:
Uncompress de .zip file in a fodler, and create the shortcuts you need.

	3DO BUILDER +

Some functions are descibed in the objects3d section of this tutorial.
I: L'INTERFACE
1: Icon menu
[image: image125.png]

	1: Create a new 3D model

	2: Open an existing 3D model

	3: Save a 3D model

	4: Create an image of a 3D model from the Unit Viewer. Use it for TA units only, as this Unit Viewer is not compatible with TA:K Units.

	5: Create a new piece of the object.

	6: Import a piece.
	Supported formats of the import module :
- *.DXF: files created by most of the 3D modeler
- *.LWO: "lightwave" files, genererated by 3D modeler
- *.OBJ: "object" files, genererated by 3D modeler
- *.3de: file created by 3DO Builder. It is a textured piece.
- *.3do: file created by 3DO Builder. It is a textured piece, taken out of its context.
- *.3dt: another 3DO builder file. Holds a piece, with all its subpieces.

	7: Export a piece.
	Supported formats are : *.DXF, *.3de, *.3dt.

	8: Zoom in (the four views are affected)

	9: Zoom out (the four views are affected)

	10: Zoom 100%

	11: Default cursor

	12: Cursor that enables you to move a piece in the four views.

	13: Draw a red border around the selected face in the 3D textured view.

Note about *.DXF files
To make your unit, you can use *.DXF files too. But you must first "soap" this files before. To do this, lunch Visual Soap and configure it like this screenshoot.
[image: image126.png]isual Soap
Options Help
Fiein

[C:Mes Dosumentsitem =)

File aut

[C:Mes Dosumentsitem =)

Soapit!

Browse.

Browse.

I
T~ Stip Header
¥ Remove lines.
£ =)t
™ Add stra 3DFACE
= | Siperiezn)

Dififo—————

#Faces [

"File in" is your *.DXF file and "File out" is the modified *.DXF file. Click on "Soap it !" to modify your file and adapt it to 3Do builder.

2: Table "Face"
[image: image127.png]C:ATemp\arabowa. 3do - 300 Builder

[[=] B3
File View QObjects Special Misc. Help
DS EE g mwn @aa|k e B [fac-a =

Front -

e F |
& Hip " -
& Legll)
SFoal [
Wakel |4IDLOGOlag2
Leatls S,
= LeolR =
&ledn [DLOGONeg3
& Fout —
WakeR o
Ledfs DLOGOs ek
q _>l_I i
Fi ol 3 = DLOGOstiek2
aces | Obiet| Advarced. | [Top = P fooLosaseeE
i i L
—Face [00 oot
P =
_ T
I owson | orsologo?
Toque AIDLOGOMs
i torsologo3
osologot
uriciogo!
Ready Capell [(13,0,50) |

NOIKIE

1 : Face selector. A face is selected on the selected part in the pieces tree just above. The face is in red on the three plane views, and also on the textured view if the option is selected (3).
2 : Possible modifications for this face : - Mapping of a texture by double click on the right menu (texture chooser) (4). The selected texture is shown under "Orientation", and its name is shown near "Texture" (2) - Change the orientation of the texture with "Orientation". You can turn in of 90°, 180°, 270°. - By clicking on "Clear", one can delete the texture from the face. - By clicking on Apply, one can map the texture on more thant one face, or on the complete piece. ("Apply to the entire object") - By clicking on Color, you can apply a simple color on a face.

3: Table "Object"
[image: image128.png]C:\Temp\arabowa. 3do - 3D0 Builder [_[CIx]
Fie View Objects Special Misc. Help

DS EE g wn Qaa| ks K [fac-a =
e Er—
& Footl i B
LeglLs lag
= LeglR [
lean iDL0GOIg2
= oot [LiDLoGONes2
WakeR -
LegthS iDL0G0Ig3
& Torso T
ead i i
i0L00stiekn
0

L |4IDLOGOshield2

Faces Obiect | Advanced. Top —x [Fignt = "
i ¥ O
oot 7 ornget
 |3.244395 Apply] —
s [shon dogs2
— ¥ Object —
< [z | oin
Ene foosss
3 Dbject Origin .
=
e DioctSie_ g fodesot
1.0 Apply tuniclogol

Ready [Capell [(32,0,-32)

NOIKIE

1: Enables you yo move the selected part more precisely than using the cursor (2). Click on Apply to validate your modifications.
3: Enables you to move the rotation axis on the origin of the axises. You can use that if you misplaced while creating your .LWO file. The rotation axis is shown with a little blue square on the three plane views.
4: Is used to zoom your part. A more powerful function will be explained in the Table "Advanced". It acts as a multiplier on the size of the part. Thus a figure smaller than one reduces it, and bigger than one enlarges it. Click Apply to record the modification.

4: Table Advanced
[image: image129.png]C:\Temp\arabowa. 3do - 3D0 Builder [_[CIx]
Fie View Objects Special Misc. Help

DS EE g wn Qe k¢ K

I vl (s Fr—
& Fooll " -
e Moy =
LeglLs il
= LeolR |
Eledn aDLoG0feg2
& Fout e,
WakeR =
LeglR5 ADL0G0feg3
= Taso —
Head o
ity ADLOGOsk
L | = S . R = |4IDLOGOshield2
Faces | Obect Advrnced. | [Top > o —
i i L
St [Veton] Ot foscogot
[osly Trarsiamators | -
1/ 10 ohd cbects |
orslogo2
SedeFacton_[10 4 fosdomz
Wx +
Ko = orslogo
|Rotation Angle: |30.0 u
E Lorsclogod
[rotte which view? 4 i L
Fon | Ton | i et
Ready [CapelL [(15,0,14) /)

A: Object
1: Check this box if you want to apply the transformations you made on this piece to all its subpieces. Useful if you want to move an arm composed of three subpieces.
2: Is used to change the size of the piece. It is more powerful than the object zoom in / out, as you can apply it axis by axis, by selecting "X", "Y", "Z" or "All". You can also apply this modification to all the subpieces of that piece. The button marked with an inversed ? (3) undoes the modifications.
4: Is used to rotate a piece as well as all its subpieces. To select which rotation you want to apply, you have to click on the "Front", "Top" or "Right" view.

B: Vertex
[image: image130.png]Face <

> oo

2Vetten <

> o3

Vet Pasiior:

X[agsme 1

s |

v [5.839045E 0

z[1a22

On this table you can move vertices of the faces, to go from [image: image131.png]

to [image: image132.png]

for instance. When you click on this table, a small red square appears on the views, marking the vertex that is to be moved. Set the new position of the vertex in the box (1) and "apply" it. You can change of vertex by using the arrows (2) next "Vertex".

C: Other
This table is empty, I dont know what it is doing here...

5: Menus
[image: image133.png]Aramon
Venna

Zhon
Taros

This menu enables you to choose which type of texture you want to use. If TA is not in the list, either you dont have TA (you should !), or you dont have configured 3DO Builder properly. Check it here. If TA:K is not in the list, either you dont have TA:K (...) or 3DO Builder is not configured properly, or that your texture pack is not correct. To build it, go here : "Objects3d". To make TA:K units, I advise you to choose TA:K -- All.

[image: image134.png]ramonst
ramonst2
ramonst3
ramonsti
raships
raships?
liflogo.

This menu is a chooser between different types of textures.

II: THE MENUS
1: File
[image: image135.png]File View Objects Special Misc. Help

New CulN
Open Cul0
Save Culss
Saveds Clst
Import Model.

Export Model

Exportto Urit Viewer 5

Exportto Uit Viewer (Custor).

Import Testures.

Esit

As you can see it, all the classical operations are available from this menu.
"Export to Unit Viewer..." makes possible to preview a unit in Cavedog Unit Viewer. Not compatible with TA:K...
"Export to Unit viewer (custom)..." allows you to test your TA unit scripts. Not TA:K compatible.
"Import Textures..." to import your own textures. Does not work with TA:K.

2: View
[image: image136.png]View Objects Special Misc. Help

v Gid
GidSize.
Zoomln 7
Zoom Dut 8

« Apply Zoom to OperL view
v futoTenter View

View »
DpentiL View »
Startup Optors.

Set Custom TA Location.
Set Custom TAK Location.

Display Dptions.
v Keep testure rafio in Faces o

"Grid" : to enable the grid in the three plan views
"Grid Size..." : to change the grid size
"View" : to choose the X, Y or Z view
"OpenGL view" : to choose what kind of 3D view you want to see, textured or not
"Startup Option..." : to tell the program where are your TA / TA:K folders.
"Display Option..." : to customize your interface
"Keep textures ratio in Face box" : uncheck this to make the program faster.

3: Objects
[image: image137.png]Objects Special Misc. Help

Import Object. Culel
Export Object CulE
Export Al Dbjects.

Create Object culC
Remove Object MajsDel

Import Scale Value.

Is used to create a new piece in the pieces tree ("Create Object") or to delete one ("Remove Object"). You can import a piece ("Import object..."), export one or all of them ("Export Object..." and "Export All Objects..."). All these functions are available from the icon menu.
"Import Scale Value..." : to fix a zoom value when you import a piece.

4: Special
[image: image138.png]Special Misc. Help

Inverse Eace F2
Inverse Obiect Faces F3
Inverse AllFaces. Fo

Merge Duplicate Veriicss.
Clean Up Model.

Add Urit Ground Plate
et Face as Unit Ground Plate. Cli+G
Change Ground Plate Size.

Seale AllObjects.

Create Uit Pcture.

"Inverse Face" : to inverse the sense of a face, if the texture appears on the wrong side.
"Inverse Object Faces" : inverses all the faces of a part.
"Inverse All Faces" : inverses all the faces of a 3D object.
"Merge Duplicate Vertices..." and "Clean Up Model" : are used to delete vertices to reduce the number if the faces. Be careful when using this, you are likely to get a strange result !
"Add Unit Ground Plate" : adds the green square arounf the foot of a unit (TA), or the green glowing circle (TA:K). The value is given in pixels, you need a 16x16 square for a 1x1 unit.
"Set face as Unit Ground Plate" : to use the selected face as the unit ground plate
"Change Ground Plate Size..." : to change its size...
"Scale all Objects..." : change the size of the whole object
"Create Unit Picture..." : use this in TA only. The picture is used in the build menus to represent the unit.

5: Misc.
[image: image139.png]Mise. Help
SelectNewtFace F12
Select Previous Face F11
Copy Piece. [
Copy Branch
Paste Pisce/Branch Majelns

"Select next Face", "Select Previous Face" : to select the next / previous face of the part.
"Copy Piece" : more simple than to export / import a part. Textures are also copied.
"Copy Branch" : same as above. Alle the subpieces are also copied.
"Paste Piece/Branch" : to paste what you have copied.

	SHORT NAME LIST

Each unit has a long name (Flying Builder) and a short name, composed of 8 letters, understood by the TA:K engine. One of the first things you want to do is to choose a short name for your unit. The first three letters are related to its camp : ARA, TAR, VER or ZON.
TDF Edit has a function that tells you the short name of any unit, giving its long name, and its long name giving its short name.
Looking for a name with TDF Edit
1 : Click "Options -> Search Unit name..."

2 : Type in a long or a short name then "Small to long", or a long name then "Long to small". Choose your language.

3 : Click search, the result is written in the text window.

[image: image140.png]Search Unit Name.

First chogse between smal urit name (ARACASTL) to long unitname [Araron Caste]
long o smallunit name.

£ Smalitolong & Langtosmal
Nestchose smal/longuni nae

=l [Pt do L =
PP Yoiconchome el

e o
uriits {Long name) can use same object and @ French " Spanish
FBI file (small name). € German

Clear Seaeh

New search. =
Type of search: long to small it name.

Resul:

Smallurit name of ‘Adorateur de Lt is VERLIHR'
End search

| |

Close

As an example, I looked for l'"Adorateur de Lihr" in the french version, and I learnt that it was VERLIHR.

Creating Build Pictures

[image: image141.png]

From Acolytes Shrine(http://www.takmcc.com/acolytes/)

	[image: image142.jpg]

	· Open your units.3do.

· Find the angle you want. Make sure it's no bigger than 64*48. I know, it’s small but you have to live with it :)

· Press ALT + PRINTSCREEN (on your keyboard)

	

	· Open MS Paint

· Paste the screenshot. (CTRL-V) (you can directly pasted into Photoshop but it's more comfortable for me :)

· Using the outline tool, select the area around your unit image, and copy it (CTRL-C)

	
	· Open Photoshop

· Create a new file; goto File + New.

· Make sure it's 64*48 pixels and in RBG color.

	[image: image144.jpg]

	· Paste your from Step 2 (it should in new layer).

· Select the "Magic Wand" tool

	[image: image145.jpg]

	· Using your "wand", select all the "blue" (or the background color and press Delete. Increasing your magnification will help

	
	· From the Layer box, right-click on layer your units pic is on and select Blending Options.

	

	· A new window should a appear

· Click (and select) Outer Glow
· Select the settings and experiment to get the effect you want.

	[image: image147.jpg]

	You should have should like the bp to your left.

	[image: image148.png]

 INCLUDEPICTURE "http://www.takmcc.com/acolytes/images/buildpcs/bg/bg4.gif" * MERGEFORMATINET [image: image149.png]

[image: image150.jpg]

 INCLUDEPICTURE "http://www.takmcc.com/acolytes/images/buildpcs/bg/bg2.jpg" * MERGEFORMATINET [image: image151.jpg]

[image: image152.png]

	Now, to added a background. First find one (Or select one here).. Do so now, I can wait

	[image: image153.jpg]

	· Got your pic? Good.

· Right Click on your picture and select Copy
· Goto to back to Photoshop.

· Paste the picture (CTRL + V) (make sure it's a layer behind your units picture)

· And now you got a background. And your finished at this point

	

	· Now saving. The easiest part.

· File and Save As...
· Make sure you save in JPG. And since TA:K will take any (file) size, and color, make sure you set quality to Maximum (12) to get the best quality :)

Customizing TA:K to Allow Third Party Races without Iron Plague

[image: image155.png]

By Delozier

All Race Custom Installation

The predominant problem I have been receiving feedback about lately is installation of third party races when the Iron Plague is not available. If you really love playing Kingdoms, I recommend that you purchase the Iron Plague..... even if you have to shop the www to find it. I know for a fact that the expansion can be purchased online through vendors such as Amazon.com, and Chips and Bits.......

So what I did was re-install Kingdoms without the Iron Plague and started trying to get the races to work there myself. I ended up creating some kinda large files to download (25mb total) and I am hopeful that this custom installation will alleviate enough race installation problems to be worth the file sizes. I have NOT included the Creon race, or any of the Iron Plague map files. I have left the sidedata files separate for those of you who wish to modify it to include only certain races. The NoIP version included with the NoIPfiles does NOT support the Creon race. The files contain:

1. Races contains the versions of the 3rd party races currently installed in my original Kingdoms folder. These have been edited for sidedata and ai conflicts. An unfinished AI (not all races are included) that can be updated if all else proves to work as planned. Also, a copy of the Creon supporting allsidedata is included.

2. NoIPfiles contains the Ip files needed to load the 3rd party races. It also contains the No IP sidedata file. It does NOT contain the Creon race.

3. Supporting files contains the extra files needed to perform the installation below. (version upgrade files, and Cavedog unit files)

Download those files to your hard drive and unzip them. DO NOT unzip them into your Kingdoms directory! Instead, unzip them into another directory that you have created. This is what I have done in order to get to the third party races to work without the Iron Plague installed:

1. Performed a FULL INSTALLATION of Kingdoms from the CD.

2. Added the -disablecavedogverification to my shortcut.

3. Installed 1x-2bd.EXE, then 2x-2bd.EXE. These are the Cavedog version 1 to 2 upgrades contained in the supporting files download. I did NOT install version 3!

4. Installed the Cavedog units included in the supporting files download.

5. Added the races and ai folder included in the races download.

6. Added the new version of the AllRaceNoIP file included in the No IP files download.

7. Added the NoIPsidedata file included in the No IP files download.

